Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Blutgerinnung: Ein ungeklärtes Rätsel

15.02.2011
Die molekularen Grundlagen der Blutgerinnung sind bis heute nur teilweise verstanden. Um Krankheiten wie Schlaganfall und Herzinfarkt besser vorbeugen und behandeln zu können, ist ein besseres Verständnis der komplizierten Prozesse dringend erforderlich. Ein neues Forschungsprojekt der Uni Würzburg arbeitet daran.

Der Balanceakt ist heikel: Einerseits soll das System der Blutgerinnung in ständiger Alarmbereitschaft sein. Ist ein Gefäß verletzt, muss es schnell eingreifen, damit der Blutverlust keine lebensbedrohliche Größe erreichen kann. Andererseits darf es auch nicht überaktiv werden. Sonst können Blutgerinnsel Gefäße verstopfen und einen Schlaganfall oder Herzinfarkt auslösen.

Hauptakteure in dem komplizierten Geschehen sind die Blutplättchen, in der Fachsprache „Thrombozyten“ genannt. Gelangen sie in die Nähe einer beschädigten Gefäßwand, werden sie von der Wand selbst aktiviert. In der Folge verändern sie ihre Form und Oberflächeneigenschaften so, dass sie sich aneinander und an der Wand des Blutgefäßes festkleben können und die Öffnung wieder verschließen.

Gerade mal zwei bis fünf Tausendstel eines Millimeters sind Thrombozyten groß. Sie sind die kleinsten bekannten Zellen im menschlichen Organismus. Dennoch arbeiten in ihnen Tausende von Proteinen zusammen und sorgen so für ihr Funktionieren.

Die Rolle eines dieser Proteine wird Dr. Cora Reiß vom Institut für Klinische Biochemie und Pathobiochemie der Universität Würzburg in den kommenden drei Jahren intensiv untersuchen. Die Deutsche Forschungsgemeinschaft DFG unterstützt diese Arbeit mit 200.000 Euro.

Das Forschungsprojekt

„Wir konzentrieren uns auf ein Strukturprotein, das an unserem Institut erstmals in Plättchen nachgewiesen und charakterisiert wurde“, erklärt Cora Reiß. Sein Name: LASP-1. Frühere Untersuchungen weisen darauf hin, dass LASP-1 eine Doppelfunktion besitzt: Es taucht sowohl in dem Signalweg auf, der Thrombozyten daran hindert, sich willkürlich zusammenzuballen. Es spielt aber auch in der Signalkette eine Rolle, die in Gang kommt, wenn eine Gefäßverletzung abgedichtet werden muss.

„Das legt den Verdacht nahe, dass das Protein von zentraler Bedeutung für die Regulation der Thrombozyten ist“, so die Wissenschaftlerin. Mit ihren Untersuchungen will sie nun dazu beitragen, die molekularen Mechanismen der hemmenden und der aktivierenden Signalkaskaden von Thrombozyten aufzuklären.

Reiß setzt für ihre Arbeit auf Mäuse, denen durch einen gentechnischen Trick das Strukturprotein fehlt. Erleiden diese Tiere eine Verwundung, bluten sie deutlich länger als vergleichbare Tiere, die LASP-1 besitzen. Dennoch ist ihre Thrombozytenzahl nicht verringert. „Anscheinend sind bei diesen Tieren die Thrombozyten nicht so gut in der Lage, sich aneinander anzulagern und ein Gerinnsel zu bilden“, sagt Reiß.

Sie will deshalb einen detaillierten Blick auf den LASP-1-Signalweg werfen und alle beteiligten Akteure identifizieren. Ihr Ziel ist es, die Rolle des Strukturproteins in dem Balanceakt von Thrombozyten-Aktivierbarkeit und -Hemmung aufzuklären.

Kontakt: Dr. Cora Reiß, T: (0931) 31-83173, E-Mail: reiss@klin-biochem.uni-wuerzburg.de

Gunnar Bartsch | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Kokosöl verlängert Leben bei peroxisomalen Störungen
20.06.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Überdosis Calcium
19.06.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics