Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Krebs nach Genpanne

11.12.2007
Charité-Forscher enträtseln Mechanismus des Tumorwachstums

Forscher der Charité - Universitätsmedizin Berlin haben erstmals geklärt, weshalb das Protein Fhit bei vielen Krebserkrankungen eine große Rolle spielt.

"Damit sind neue Therapiestrategien näher gerückt, wie man mit Hilfe dieses Proteins das krebsartige Wachstum von Zellen hemmen könnte", erklärt der Leiter der Studie, Prof. Otmar Huber vom Institut für Labora¬toriumsmedizin und Pathobiochemie am Charité Campus Benjamin Franklin. Die Arbeit seiner Forschergruppe wurde jetzt von der US-Fachzeitschrift Pro¬ceedings of the National Academy of Science veröffentlicht.*

Normalerweise funktioniert das Gen Fhit als Tumorsuppressor. Es unterdrückt also Krebserkrankungen. Schon länger war es als Schwachstelle im Erbgut bekannt. Zellbiologische Untersuchungen brachten ans Licht, dass dieses Gen bei bis zu 60 Prozent der Patienten mit Leberkrebs und ebenso vielen Patienten mit Speiseröh¬rentumoren zerstört ist. Auch bei Lungen-, Darm-, Gebärmutter- und Brustkrebs spielt es häufig eine Rolle. "Das Gen reagiert extrem empfindlich auf krebsauslö¬sende Umweltfaktoren wie Nikotin", sagt Prof. Huber. Mit seiner Arbeitsgruppe an der Charité konnte er jetzt feststellen, weshalb Fhit für den Schutz vor Krebs so wichtig ist.

... mehr zu:
»Gen »Protein »Tumorwachstum

Das Gen Fhit enthält die Erbinformation für das gleichnamige Eiweiß. Dieses Protein ist in der Lage, mit ?-Catenin, einem für den Zellaufbau zentralen Molekül, zusam¬men zu wirken. Fhit steuert ?-Catenin, so dass die Herstellung einer Vielzahl von Proteinen gehemmt wird, die zu unkontrolliertem Zellwachstum führen. "Wenn Fhit nicht mehr funktioniert, entstehen gerade diese Eiweiße in großen Mengen", erklärt Huber. "Dann wachsen die Zellen verstärkt und das führt häufig zu einem Tumor."

Durch Einbringen eines gesunden Fhit-Gens in Krebszellen ist es der Forschergrup¬pe gelungen, die Produktion dieser Proteine zu hemmen und das für Tumorzellen typische unkontrollierte Wachstum zu verringern. Dabei schalten die entarteten Zellen dann ein Programm ein, das sie absterben lässt. "Hier liegt der Hoffnungs¬schimmer", meint Prof. Huber. "Wenn diese Strategie beim Menschen auch funk¬tioniert, könnte man in Zukunft in bestimmten Fällen das Tumorwachstum verhin¬dern oder zumindest hemmen." Doch ein Allheilmittel gegen Krebs sei auch das nicht, warnt er. "Es gibt viele Genmutationen, die zu Tumoren führen können. Fhit ist längst nicht in allen Fällen beteiligt."

*Proc Natl Acad Sci USA, 104(51), 20344-20349, 2007

Kontakt
Prof. Otmar Huber, Institut für Laboratoriumsmedizin und Pathobiochemie, Charité -
Universitätsmedizin Berlin
Tel 030 - 8445 2555
otmar.huber@charite.de

Kerstin Endele | idw
Weitere Informationen:
http://www.charite.de

Weitere Berichte zu: Gen Protein Tumorwachstum

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Humane Papillomviren programmieren ihre Wirtszellen um und begünstigen so die Hautkrebsentstehung
12.12.2019 | Wilhelm Sander-Stiftung

nachricht Forscher untersuchen Rolle der Zellmembran bei der Entstehung chronischer Krankheiten
10.12.2019 | Universität des Saarlandes

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Hochgeladenes Ion bahnt den Weg zu neuer Physik

In einer experimentell-theoretischen Gemeinschaftsarbeit hat am Heidelberger MPI für Kernphysik ein internationales Physiker-Team erstmals eine Orbitalkreuzung im hochgeladenen Ion Pr9+ nachgewiesen. Mittels einer Elektronenstrahl-Ionenfalle haben sie optische Spektren aufgenommen und anhand von Atomstrukturrechnungen analysiert. Ein hierfür erwarteter Übergang von nHz-Breite wurde identifiziert und seine Energie mit hoher Präzision bestimmt. Die Theorie sagt für diese „Uhrenlinie“ eine sehr große Empfindlichkeit auf neue Physik und zugleich eine extrem geringe Anfälligkeit gegenüber externen Störungen voraus, was sie zu einem einzigartigen Kandidaten zukünftiger Präzisionsstudien macht.

Laserspektroskopie neutraler Atome und einfach geladener Ionen hat während der vergangenen Jahrzehnte Dank einer Serie technologischer Fortschritte eine...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: Wie Graphen-Nanostrukturen magnetisch werden

Graphen, eine zweidimensionale Struktur aus Kohlenstoff, ist ein Material mit hervorragenden mechanischen, elektronischen und optischen Eigenschaften. Doch für magnetische Anwendungen schien es bislang nicht nutzbar. Forschern der Empa ist es gemeinsam mit internationalen Partnern nun gelungen, ein in den 1970er Jahren vorhergesagtes Molekül zu synthetisieren, welches beweist, dass Graphen-Nanostrukturen in ganz bestimmten Formen magnetische Eigenschaften aufweisen, die künftige spintronische Anwendungen erlauben könnten. Die Ergebnisse sind eben im renommierten Fachmagazin Nature Nanotechnology erschienen.

Graphen-Nanostrukturen (auch Nanographene genannt) können, je nach Form und Ausrichtung der Ränder, ganz unterschiedliche Eigenschaften besitzen - zum Beispiel...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Analyse internationaler Finanzmärkte

10.12.2019 | Veranstaltungen

QURATOR 2020 – weltweit erste Konferenz für Kuratierungstechnologien

04.12.2019 | Veranstaltungen

Die Zukunft der Arbeit

03.12.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Hefe-Spezies in Braunschweig entdeckt

12.12.2019 | Biowissenschaften Chemie

Humane Papillomviren programmieren ihre Wirtszellen um und begünstigen so die Hautkrebsentstehung

12.12.2019 | Medizin Gesundheit

Urbane Gärten: Wie Agrarschädlinge von Städten profitieren

12.12.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics