Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Krankheitsgen einer erblichen Tumorerkrankung des Nervensystems identifiziert

07.11.2000


"Nature Genetics" veröffentlicht Forschungsergebnisse des Instituts für Humangenetik

Stephan Niemann und Ulrich Müller vom Institut für Humangenetik der Universität Gießen ist die Aufklärung des genetischen Defekts einer familiären Tumorerkrankung des Nervensystems, den sog. hereditären Paragangliomen, gelungen. Die Ergebnisse wurden jetzt in der Novemberausgabe von "Nature Genetics" (vol. 26, 268-270) publiziert. Der impact factor dieser Zeitschrift ist mit 40,3 der höchste unter den Journalen der "life sciences", die primär Originalarbeiten veröffentlichen. Die Tatsache, dass diese Entdeckung dort zur Publikation angenommen worden ist, belegt die Relevanz der Ergebnisse.

Bei dem untersuchten Tumor handelt es sich um eine autosomal dominant vererbte Variante des Paraganglioms (paraganglioma, Type 3; PGL3). Paragangliome, die auch als Glomustumoren oder Chemodektome bezeichnet werden, sind meist gutartige, langsam wachsende Tumoren des parasympathischen Nervengewebes. Sie liegen vorwiegend im Kopf- und Halsbereich, wobei die Karotisgabel (Halsschlagader), das Mittelohr sowie die Schädelbasis zu den häufigsten Lokalisationen zählen. In der Regel manifestieren sich Paragangliome im Erwachsenenalter. Das Alter zur Zeit des Krankheitsbeginns kann jedoch stark schwanken. Obwohl die maligne Entartung von Paragangliomen selten ist, müssen die Tumore dann chirurgisch entfernt werden, wenn durch die Größenzunahme körperliche Beeinträchtigungen wie Lähmungen der Hirnnerven und Hörstörungen auftreten. Während die Mehrzahl der Paragangliome sporadisch auftritt, kommen mindestens 10% familiär gehäuft vor und werden autosomal dominant vererbt.

Bisher kennt man die chromosomale Lokalisation von drei autosomal dominant vererbten Formen des Paraganglioms. Zwei Formen liegen in unterschiedlichen Intervallen auf Chromosom 11 (PGL1 und 2), der dritte Genort (PGL3) wurde von dem Giessener Team entdeckt und Chromosom 1 zugeordnet. Durch einen sog. funktionellen Klonierungsansatz ist es Niemann und Müller gelungen, das Gen bei PGL3 zu identifizieren, welches für die Tumorigenese verantwortlich ist. Das Gen, SDHC, kodiert für einen Bestandteil eines Enzymkomplexes, welcher bei der oxydativen Phosphorylierung, also der "Zellatmung" und damit bei der Energiegewinnung in den Mitochondrien, den "Kraftwerken" der Zelle, eine wesentliche Rolle spielt. Wird die Zellatmung durch den funktionellen Ausfall dieses Komplexes reduziert, so kommt es schließlich zur Entartung der Zellen. Das Gen verhält sich wie ein Tumorsuppressor, das heißt, beide Kopien des Gens müssen mutiert (verändert) sein, um schließlich eine Tumorentstehung zu verursachen. Die erste Mutation liegt in der Keimbahn vor und wird an 50% der Nachkommen eines Mutationsträgers vererbt. Die zweite Kopie des Gens wird in Zellen des parasympathischen Nervengewebes durch partiellen Verlust von Chromosom 1 ausgeschaltet. Wenn beide Kopien des Gens fehlen, kommt es zur unkontrollierten Zellteilung im betroffenen Gewebe. Der genaue Mechanismus der Tumorentstehung, der bisher noch nicht aufgeklärt ist, ist Gegenstand intensiver Forschungsbemühungen. Es ist jedoch von Interesse, dass sporadische Paragangliome gehäuft bei Personen auftreten, die in großer Höhe, also unter permanentem exogenen Sauerstoffmangel leben. Außerdem finden sich sporadische Paragangliome vermehrt bei Patienten mit chronisch obstruktiven Lungenerkrankungen. Bei der von Niemann und Müller beschriebenen genetischen Variante des Tumors führt offenbar endogener Sauerstoffmangel zur Ausbildung eines Paraganglioms.

Die Ergebnisse sind von unmittelbarem Nutzen für Betroffene mit hereditären Paragangliomen, da jetzt durch einen Gentest Risikopersonen schon frühzeitig erkannt werden können. Bei Nachweis einer Mutation können durch regelmäßige Kontrolluntersuchungen Paragangliome bereits im Frühstadium erkannt und operiert werden.

Kontaktadresse:

Prof. Dr. Ulrich Müller
Dr. Stephan Niemann
Institut für Humangenetik
Schlangenzahl 14
35392 Gießen
Tel.: 0641/99-41600
Fax: 0641/99-41609
e-Mail: Ulrich.Mueller@humangenetik.med.uni-giessen.de 
Stephan.Niemann@humangenetik.med.uni-giessen.de

Christel Lauterbach | idw

Weitere Berichte zu: Chromosom Gen Nervensystem PGL3 Paragangliom Tumorerkrankung

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Narkolepsie: Wissenschaftler entlarven den Übeltäter der rätselhaften Schlafkrankheit
20.09.2018 | Universitätsspital Bern

nachricht Virotherapie bei Bauchfellkrebs erfolgreich getestet - Neue biologische Krebstherapie
18.09.2018 | Universitätsklinikum Tübingen

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht

Wieso sind manche Metalle magnetisch? Diese einfache Frage ist wissenschaftlich gar nicht so leicht fundiert zu beantworten. Das zeigt eine aktuelle Arbeit von Wissenschaftlern des Forschungszentrums Jülich und der Universität Halle. Den Forschern ist es zum ersten Mal gelungen, in einem magnetischen Material, in diesem Fall Kobalt, die Wechselwirkung zwischen einzelnen Elektronen sichtbar zu machen, die letztlich zur Ausbildung der magnetischen Eigenschaften führt. Damit sind erstmals genaue Einblicke in den elektronischen Ursprung des Magnetismus möglich, die vorher nur auf theoretischem Weg zugänglich waren.

Für ihre Untersuchung nutzten die Forscher ein spezielles Elektronenmikroskop, das das Forschungszentrum Jülich am Elettra-Speicherring im italienischen Triest...

Im Focus: Erstmals gemessen: Wie lange dauert ein Quantensprung?

Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Der Truck der Zukunft

Lastkraftwagen (Lkw) sind für den Gütertransport auch in den kommenden Jahrzehnten unverzichtbar. Wissenschaftler und Wissenschaftlerinnen der Technischen Universität München (TUM) und ihre Partner haben ein Konzept für den Truck der Zukunft erarbeitet. Dazu zählen die europaweite Zulassung für Lang-Lkw, der Diesel-Hybrid-Antrieb und eine multifunktionale Fahrerkabine.

Laut der Prognose des Bundesministeriums für Verkehr und digitale Infrastruktur wird der Lkw-Güterverkehr bis 2030 im Vergleich zu 2010 um 39 Prozent steigen....

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungen

Forum Additive Fertigung: So gelingt der Einstieg in den 3D-Druck

21.09.2018 | Veranstaltungen

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue CBMC-Geräteschutzschaltervarianten

22.09.2018 | Energie und Elektrotechnik

ISO-27001-Zertifikat für die GFOS mbH und die GFOS Technologieberatung GmbH

21.09.2018 | Unternehmensmeldung

Kundenindividuelle Steckverbinder online konfigurieren und bestellen

21.09.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics