Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Cytostatikum hält Tumorzellen in Schach

06.11.2000


... mehr zu:
»Cisplatin »Cytostatikum »DNS »Tumorzelle
Cytostatikum unter dem Kraftmikroskop

Mechanische Stabilisierung von DNS hält Tumorzellen in Schach

Cisplatin ist eines der am weitesten verbreiteten Krebsmedikamente. Wie bei vielen anderen Chemotherapeutika auch, ist der Wirkmechanismus noch nicht vollständig erforscht. Dank der Münchner Physiker Hermann E. Gaub, Rupert Krautbauer und Hauke Clausen-Schaumann ist man nun aber einen wichtigen Erkenntnisschritt weiter.

Cisplatin wirkt als Cytostatikum, das heißt es hemmt die Zellteilung. Tumorzellen, die unkontrolliert wuchern, können durch Cytostatika in ihrem Wachstum gebremst, manche Tumore auch zum Schrumpfen gebracht werden.

Schon länger ist bekannt, dass Cisplatin an die DNS-Doppelstränge von Zellen bindet und dabei Querverbindungen zwischen benachbarten Bausteinen sowohl innerhalb eines Stranges als auch zwischen den beiden Strängen knüpft. - Aber was bedeutet das für die DNS?

Gaub und Mitarbeiter haben sich DNS mit und ohne Cisplatin genauer angesehen. Methode der Wahl war die Einzelmolekül-Kraftspektroskopie. Dazu wurden einzelne DNS-Doppelstränge auf ein Goldsubstrat aufgebracht und dann zwischen dem Gold und der winzigen Spitze eines Kraftmikroskops gedehnt. Das Gerät zeichnet die aufgewendete Kraft gegen die erreichte Ausdehnung des DNS-Stranges auf. Frappierende Erkenntnis: Cisplatin verändert die mechanischen Eigenschaften der Erb-Moleküle ganz erheblich.

Dehnungsexperimente mit doppelsträngiger DNS hatten bereits früher ergeben, dass die Moleküle stark überstreckt werden können, ohne zu reißen. Dabei findet zunächst eine Umstrukturierung statt. Bei weiterer Dehnung trennt sich der Doppelstrang in zwei einzelne Stränge auf. Bei Entspannung geht das Molekül wieder in die Ausgangskonformation zurück.

Die Einlagerung von Cisplatin bewirkt, dass die DNS wesentlich stabiler gegenüber der Dehnung reagiert. Die Strangtrennung kann durch den Wirkstoff sogar ganz verhindert werden.

Auch beim Ablesen der genetischen Information müssen die beteiligten Enzyme - für ihre Verhältnisse - starke Kräfte auf die DNS ausüben, um die Doppel-Helix zu entwinden und die beiden Stränge an der abzulesenden Stelle voneinander zu trennen. Nur so können sie an die Information gelangen. Es ist daher naheliegend, dass Cisplatin die DNS mechanisch stabilisiert und so unablesbar macht. Kann die DNS nicht abgelesen werden, kann sich eine Zelle auch nicht mehr teilen. So wird das Wachstum von Tumorzellen gebremst.

Kontakt:

Prof. Dr.H. E. Gaub
Lehrstuhl f. Angewandte Physik
Amalienstr. 54
D-80799 München
Germany

Fax: (+49) 89-2180-2050

E-Mail: gaub@physik.uni-muenchen.de


Quelle: Angewandte Chemie 2000, 112 (21), 4056 - 4059
Hrsg.: Gesellschaft Deutscher Chemiker e. V. (GDCh)

Dr. Kurt Begitt | idw

Weitere Berichte zu: Cisplatin Cytostatikum DNS Tumorzelle

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Narkolepsie: Wissenschaftler entlarven den Übeltäter der rätselhaften Schlafkrankheit
20.09.2018 | Universitätsspital Bern

nachricht Virotherapie bei Bauchfellkrebs erfolgreich getestet - Neue biologische Krebstherapie
18.09.2018 | Universitätsklinikum Tübingen

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht

Wieso sind manche Metalle magnetisch? Diese einfache Frage ist wissenschaftlich gar nicht so leicht fundiert zu beantworten. Das zeigt eine aktuelle Arbeit von Wissenschaftlern des Forschungszentrums Jülich und der Universität Halle. Den Forschern ist es zum ersten Mal gelungen, in einem magnetischen Material, in diesem Fall Kobalt, die Wechselwirkung zwischen einzelnen Elektronen sichtbar zu machen, die letztlich zur Ausbildung der magnetischen Eigenschaften führt. Damit sind erstmals genaue Einblicke in den elektronischen Ursprung des Magnetismus möglich, die vorher nur auf theoretischem Weg zugänglich waren.

Für ihre Untersuchung nutzten die Forscher ein spezielles Elektronenmikroskop, das das Forschungszentrum Jülich am Elettra-Speicherring im italienischen Triest...

Im Focus: Erstmals gemessen: Wie lange dauert ein Quantensprung?

Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Der Truck der Zukunft

Lastkraftwagen (Lkw) sind für den Gütertransport auch in den kommenden Jahrzehnten unverzichtbar. Wissenschaftler und Wissenschaftlerinnen der Technischen Universität München (TUM) und ihre Partner haben ein Konzept für den Truck der Zukunft erarbeitet. Dazu zählen die europaweite Zulassung für Lang-Lkw, der Diesel-Hybrid-Antrieb und eine multifunktionale Fahrerkabine.

Laut der Prognose des Bundesministeriums für Verkehr und digitale Infrastruktur wird der Lkw-Güterverkehr bis 2030 im Vergleich zu 2010 um 39 Prozent steigen....

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungen

Forum Additive Fertigung: So gelingt der Einstieg in den 3D-Druck

21.09.2018 | Veranstaltungen

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Tiefseebergbau: Forschung zu Risiken und ökologischen Folgen geht weiter

21.09.2018 | Geowissenschaften

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungsnachrichten

Optimierungspotenziale bei Kaminöfen

21.09.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics