Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ausgereifte Systeme der Cochlea-Implantate

20.03.2002


Seit 15 Jahren werden an der Klinik für Hals-Nasen-Ohrenkrankheiten am Klinikum der Universität München in Großhadern so genannte Cochlea-Implantate verwendet (Cochlea ist der anatomische Fachbegriff für die Hörschnecke im Ohr). 142 Patienten sind in dieser Zeit mit diesem System versorgt worden. Am heutigen Mittwoch treffen sich Patienten und Ärzte, um über die neuesten Entwicklungen in der HNO-Disziplin zu diskutieren.

Was ist ein Cochlea-Implantat?

Ein Cochlea-Implantat umgeht ein funktionsunfähiges Innenohr und reizt den Hörnerv direkt mit schwachen elektrischen Signalen. Das System besteht aus externen Elementen (Mikrofon, Sprachprozessor und Sendespule) und Elementen, die dem Patienten durch eine Operation implantiert werden (Empfangsspule, Elektronik, 8 bis 22 Reizelektroden). In der HNO-Klinik in Großhadern werden die drei marktführenden Implantat-Systeme eingesetzt.

Wie funktioniert das Implantat?

Normalerweise nehmen die Sinneszellen im Innenohr Schallwellen auf und leiten sie an den Hörnerv weiter. Sind diese Sinneszellen degeneriert oder wie zum Beispiel bei taubgeborenen Kindern gar nicht angelegt, kommt das Cochlea-Implantat zum Ein-satz. Über ein Mikrofon werden akustische Signale aufgenommen und zu einem Sprachprozessor geleitet. In diesem Prozessor werden diese akustischen Signale in elektrische umgewandelt und über einen Sender zur Empfangsspule im hinter dem Ohr eingepflanzten Implantat geleitet. Das Implantat dekodiert die Signale und gibt sie an die Reizelektroden im Innenohr weiter, die dann den Hörnerv anregen. Das Cochlea-Implantat übernimmt so praktisch die Schallwellenübertragung bis zum Hörnerv. Ab welcher Stromstärke ein Patient hört oder nicht, muss nach der Operation individuell eingestellt werden. Die Geräte haben eine hohe Zuverlässigkeit, die höher als z.B. bei Herzschrittmachern liegt.

Welche Patienten sind Kandidaten für dieses System?

In den Anfangsjahren des Cochlea-Implantats wurde die Indikation dafür noch äußerst streng gefasst. Heute kommen alle Patienten in Frage, die mit normalen Hörgeräten nicht mehr ausreichend kommunizieren können oder bei denen in den
nächsten Jahren eine vollständige Ertaubung droht. Möglich ist das Implantat auch bei taubgeborenen Kindern und bei Patienten, die durch äußere Einflüsse wie z.B. Unfälle oder Hirnhautentzündungen ertaubt sind.

Wann ist der günstigste Zeitpunkt für das Implantat?


Die besten Ergebnisse werden erzielt, wenn zwischen Ertaubung und Implantation höchstens ein paar Monate vergangen sind, damit noch eine gute Hörerinnerung vorhanden ist. Sind Patienten bereits einige Jahre taub, ist der Hörfortschritt langsamer und die Rehabilitation wesentlich mühsamer. Bei taubgeborenen Kindern sollte die Operation in den ersten beiden Lebensjahren erfolgen, da auch die Hörbahnen im Gehirn vorwiegend in den ersten 20 Lebensmonaten reifen.

Was passiert bei der Operation?

Der Eingriff dauert unter Vollnarkose etwa zwei bis drei Stunden. Alle Maßnahmen geschehen am äußeren Schädel. Je nach Modell und Patient werden 8 bis 22 Elektroden in die Hörschnecke eingeführt, jede Elektrode repräsentiert eine andere Tonhöhe. Für die Empfangsspule wird ein Bett in den Schädelknochen gefräst. Schon während der Operation wird die Funktion des Implantats überprüft.

Wie sieht die Nachsorge aus?

Nach dem Abschluss der Wundheilung beginnt die Anpassung des Sprachprozessors. Dabei werden die einzelnen Elektroden des Implantats der Reihe nach angesteuert, um zu registrieren, ab welcher Stromstärke ein Patient hört und ab wann es zu laut wird. In Abhängigkeit von der Lage der Elektrode und der Leitfähigkeit der Lymphflüssigkeit in der Hörschnecke wird das Gerät individuell eingestellt. Im Anschluss an die Anpassung erfolgt ein intensives Hörtraining durch eine Hör- und Sprachtherapeutin. Hierbei soll der Patient das Hören und das Verstehen von Sprache mit dem Implantat erlernen. Im Rahmen dieses Trainings wird der Sprachprozessor immer wieder nachjustiert bis der Höreindruck dem natürlichen Sprachklang möglichst nahe kommt. Ziel der Rehabilitation ist nicht nur das Sprachverstehen in Ruhe wiederherzustellen, sondern auch Sprache im Störgeräusch zu verstehen und telefonieren zu können. Bisher lässt sich mit der gegenwärtigen Technik allerdings keine befriedigende Klangqualität beim Hören komplexer Musik (z.B. Symphonien) erzielen.

S. Nicole Bongard | idw
Weitere Informationen:
http://idw-online.de/public/www.klinikum.uni-muenchen.de

Weitere Berichte zu: Cochlea-Implantat Elektrode Hörnerv Implantat

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neue Prüfmethode für die Trinkwassertechnik
21.02.2020 | Technische Hochschule Mittelhessen

nachricht Zwei Fliegen mit einer Klappe: Entzündung gehemmt, Knochenheilung gefördert
20.02.2020 | Friedrich-Alexander-Universität Erlangen-Nürnberg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung

Wissenschaftler der Universität Paderborn und der TU Dortmund veröffentlichen Ergebnisse in Nature Communications

Computer speichern Informationen in Form eines Binärcodes, einer Reihe aus Einsen und Nullen – sogenannten Bits. In der Praxis werden dafür komplexe...

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Im Focus: Einblicke in die Rolle von Materialdefekten bei der spin-abhängigen Petahertzelektronik

Die Betriebsgeschwindigkeit von Halbleitern in elektronischen und optoelektronischen Geräten ist auf mehrere Gigahertz (eine Milliarde Oszillationen pro Sekunde) beschränkt. Die Rechengeschwindigkeit von modernen Computern trifft dadurch auf eine Grenze. Forscher am MPSD und dem Indian Institute of Technology in Bombay (IIT) haben nun untersucht, wie diese Grenze mithilfe von Lichtwellen und Festkörperstrukturen mit Defekten erhöht werden könnte, um noch größere Rechenleistungen zu erreichen.

Lichtwellen schwingen mehrere hundert Trillionen Mal pro Sekunde und haben das Potential, die Bewegung von Elektronen zu steuern. Im Gegensatz zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Globale Datenbank für Karstquellenabflüsse

21.02.2020 | Geowissenschaften

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungsnachrichten

Langlebige Fachwerkbrücken aus Stahl einfacher bemessen

21.02.2020 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics