Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Parkinson: Falsche Signale bewirken Zelltod

26.02.2007
Wissenschaftler suchen nun nach Methoden, gefährdete Zellen zu schützen

Eine Ursache für die Nervenkrankheit Morbidus Parkinson sind fehlgeleitete Signale, die zum Tod von Nervenzellen führen. Wie ein internationales Forscherteam in der aktuellen Ausgabe der Prodceedings of the National Accademy of Science berichtet, bewirken diese Signale, dass sich erkrankte Nervenzellen teilen wollen - obwohl sich ausdifferenzierte Gehirnzellen grundsätzlich nicht vermehren. Dieser Prozess führt schließlich zum Zelltod. Die Wissenschaftler hoffen, dass diese neuen Forschungsergebnisse neue Ansätze für mögliche Therapien liefern.

Die Forscher untersuchten das Gehirngewebe verstorbener Patienten. Sie wiesen nach, dass sich der DNA-Strang, der die genetischen Informationen enthält, bereits verdoppelt hatte. Bei der Mitose sorgt diese DNA-Replikation dafür, dass die genetischen Informationen in den neuen Zellen erhalten bleiben. "Außerdem waren bereits mehrere molekulare Schalter aktiviert, die normalerweise zur Zellteilung führen," sagt Autor Günter Höglinger von der beteiligten Philipps-Universität Marburg im Gespräch mit pressetext. Ähnliche Vorgänge beobachteten die Wissenschaftler auch in Zellkulturen und bei Versuchen mit Mäusen. Zur Teilung der erkrankten Zellen kam es allerdings nicht: Sie wurde durch Stoppsignale verhindert. Stattdessen starben die Zellen ab.

"Zellteilung und Zelltod sind eng miteinander verbunden", sagt Höglinger. "Denn die Zellteilung ist für den Organismus ein gefährlicher Vorgang." Werden etwa die genetischen Informationen während der Mitose falsch übertragen, entstehen im schlimmsten Fall Krebszellen. "Um den Gesamtorganismus zu schützen, werden Zellen während ihrer Teilung deshalb sehr anfällig gegenüber dem Zelltod. Sie sind derart hoch spezialisiert, dass eine Zellteilung im Gehirn ein Informationschaos verursachen würde", sagt Höglinger. Die Stoppsignale verhindern deshalb die Mitose und leiten stattdessen den Zelltod ein.

Die genaue Abfolge dieser zellulären Signalkette haben die Wissenschaftler in Versuchen mit Zellkulturen und Mäusen bereits entschlüsselt. "Es ist uns sogar gelungen, den Zelltod zu verhindern", sagt Höglinger. "Dazu haben wir einen zentralen Schalter durch genetische Manipulation ausgeschaltet." Derzeit untersuchen die Forscher, warum sich die Nervenzellen überhaupt teilen wollen. Dies könnte dabei helfen, Strategien zu entwickeln, um die gefährdeten Zellen zu schützen.

Parkinson ist eine der häufigsten Erkrankungen des Nervensystems. Allein in Deutschland sind etwa 300.000 Menschen davon betroffen. Ursache der mit der Erkrankung einhergehenden Symptome ist ein Mangel des Botenstoffs Dopamin, der durch das Absterben von dopaminproduzierenden Zellen in der Substantia nigra - der Gehirnregion, die Bewegungen plant und einleitet - hervorgerufen wird. Bislang gibt es noch keine Therapie, die das Fortschreiten des Zelltods aufhält.

Christoph Marty | pressetext.deutschland
Weitere Informationen:
http://www.uni-marburg.de/

Weitere Berichte zu: Mitose Nervenzellen Parkinson Zellteilung Zelltod

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Narkolepsie: Wissenschaftler entlarven den Übeltäter der rätselhaften Schlafkrankheit
20.09.2018 | Universitätsspital Bern

nachricht Virotherapie bei Bauchfellkrebs erfolgreich getestet - Neue biologische Krebstherapie
18.09.2018 | Universitätsklinikum Tübingen

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht

Wieso sind manche Metalle magnetisch? Diese einfache Frage ist wissenschaftlich gar nicht so leicht fundiert zu beantworten. Das zeigt eine aktuelle Arbeit von Wissenschaftlern des Forschungszentrums Jülich und der Universität Halle. Den Forschern ist es zum ersten Mal gelungen, in einem magnetischen Material, in diesem Fall Kobalt, die Wechselwirkung zwischen einzelnen Elektronen sichtbar zu machen, die letztlich zur Ausbildung der magnetischen Eigenschaften führt. Damit sind erstmals genaue Einblicke in den elektronischen Ursprung des Magnetismus möglich, die vorher nur auf theoretischem Weg zugänglich waren.

Für ihre Untersuchung nutzten die Forscher ein spezielles Elektronenmikroskop, das das Forschungszentrum Jülich am Elettra-Speicherring im italienischen Triest...

Im Focus: Erstmals gemessen: Wie lange dauert ein Quantensprung?

Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Der Truck der Zukunft

Lastkraftwagen (Lkw) sind für den Gütertransport auch in den kommenden Jahrzehnten unverzichtbar. Wissenschaftler und Wissenschaftlerinnen der Technischen Universität München (TUM) und ihre Partner haben ein Konzept für den Truck der Zukunft erarbeitet. Dazu zählen die europaweite Zulassung für Lang-Lkw, der Diesel-Hybrid-Antrieb und eine multifunktionale Fahrerkabine.

Laut der Prognose des Bundesministeriums für Verkehr und digitale Infrastruktur wird der Lkw-Güterverkehr bis 2030 im Vergleich zu 2010 um 39 Prozent steigen....

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungen

Gesundheitstipps und ein virtueller Tauchgang zu Korallenriffen

20.09.2018 | Veranstaltungen

Internationale Experten der Orthopädietechnik tagen in Göttingen

19.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Lichtverschmutzung macht Fische mutig

21.09.2018 | Ökologie Umwelt- Naturschutz

Gegen Straßenschmutz im Regenwasser

21.09.2018 | Ökologie Umwelt- Naturschutz

Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht

21.09.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics