Botox: Funktion des Nervengifts entschlüsselt

Einem Forscherteam unter der Leitung von Thomas Binz, Abteilung Physiologische Chemie der Medizinischen Hochschule Hannover (MHH) ist es in Kooperation mit Wissenschaftlern des Howard Hughes Medical Institute der Stanford University erstmals gelungen zu klären, wie das als „Botox“ bekannte Nervengift molekular funktioniert. „Auf Grundlage unserer Erkenntnisse könnten maßgeblich neue Medikamente mit schmerzhemmender Wirkungsoptimierung sowie Gegengifte entwickelt werden“, verdeutlicht Binz im Gespräch mit pressetext.

Im Detail untersuchten die Forscher einen der giftigsten Stoffe, die in der Natur vorkommen, das so genannte Botulinum Neurotxin. Das Gift bewirkt eine Hemmung der Ausschüttung des Neurotransmitters Acetylcholin und blockiert gleichzeitig die Impulsübertragung von der Nervenzelle auf den Muskel. Vor diesem Hintergrund einer Muskellähmung gelang es den Toxikologen, das Gift bis hin zu seiner atomaren Struktur zu analysieren. Die Hauptfragestellung umschreibt Binz so, dass „die Frage geklärt werden sollte, wie das Botulinum Neurotoxin die richtige Stelle an der Oberfläche der Nervenzelle findet und schließlich in die Zelle eindringt“.

Als Ergebnis ihrer Untersuchungen konnten die Forscher feststellten, dass dazu zunächst das Neurotoxinmolekül an Zuckerstrukturen auf den Nervenzellmembranen andockt. Das Molekül bewegt sich anschließend in fast schwimmender Art und Weise auf der Zellmembran, bis Neurotransmitter – für die Impulsübertragungen von Nerven auf Muskeln verantwortlich – ausgeschüttet werden. „Interessant hierbei ist, dass für die Andockstelle für das Neurotoxin ein Proteinrezeptor eine wichtige Rolle spielt, der sonst eigentlich für die Ausschüttung von Neurotransmittern zuständig ist“, unterstreicht der Experte. Durch einen Andockprozess an diesen Rezeptor kann das Neurotoxin in die Nervenzelle eindringen und so die Freisetzung von Neurotransmittern umgehen. Erst durch diesen Vorgang tritt eine Lähmung des Muskels ein.

Mit dem Wissen über die genaue Interaktionsstelle und damit der Funktionsweise von Botulinum Neurotoxin ließen sich nun auch Alternativen zu bislang genutzten Gegengiften wie Hyperimmunseren von Pferden entwickeln, meint Binz. Des Weiteren ergäben sich neue Behandlungsmöglichkeiten von Spasmen wie dem so genannten Schiefhalssyndrom. Binz hebt hierbei hervor, dass durch eine gezielte Reduktion mit lokaler Begrenzung gute und vor allem nebenwirkungsfreie Behandlungsalternativen nun besser anzuwenden seien. „Noch langfristige Zukunftsmusik ist hingegen das Einbringen der Toxine in andere Nervenzellen sensorischer Art“, so Binz. Die aktuellen Forschungsergebnisse werden am 21. Dezember 2006 im Wissenschaftsmagazin „Nature“ http://www.nature.com publiziert und sind online bereits unter http://www.nature.com/nature/journal/vaop/ncurrent/pdf/nature05387.pdf abrufbar.

Media Contact

Florian Fügemann pressetext.deutschland

Alle Nachrichten aus der Kategorie: Medizin Gesundheit

Dieser Fachbereich fasst die Vielzahl der medizinischen Fachrichtungen aus dem Bereich der Humanmedizin zusammen.

Unter anderem finden Sie hier Berichte aus den Teilbereichen: Anästhesiologie, Anatomie, Chirurgie, Humangenetik, Hygiene und Umweltmedizin, Innere Medizin, Neurologie, Pharmakologie, Physiologie, Urologie oder Zahnmedizin.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Mehr Prozess- und Produktinnovationen in Deutschland als im EU-Durchschnitt

Mehr als jedes 3. Unternehmen (36 %) in Deutschland hat zwischen 2018 und 2020 (aktuellste Zahlen für die EU-Länder) neue Produkte entwickelt, Neuerungen von Wettbewerbern imitiert oder eigene Produkte weiterentwickelt….

Nanofasern befreien Wasser von gefährlichen Farbstoffen

Farbstoffe, wie sie zum Beispiel in der Textilindustrie verwendet werden, sind ein großes Umweltproblem. An der TU Wien entwickelte man nun effiziente Filter dafür – mit Hilfe von Zellulose-Abfällen. Abfall…

Entscheidender Durchbruch für die Batterieproduktion

Energie speichern und nutzen mit innovativen Schwefelkathoden. HU-Forschungsteam entwickelt Grundlagen für nachhaltige Batterietechnologie. Elektromobilität und portable elektronische Geräte wie Laptop und Handy sind ohne die Verwendung von Lithium-Ionen-Batterien undenkbar. Das…

Partner & Förderer