Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Perspektiven in der Schlaganfalltherapie

28.03.2006


Forscher der Universität Zürich haben herausgefunden, weshalb die meisten Medikamente bei Schlaganfällen nicht wirken. Wie sie in der Online-Ausgabe der Zeitschrift "Nature Neuroscience" berichten, entfernt ein Transporter-Eiweiss die verabreichten Neuroprotektiva aus dem Gehirn.



Der Schlaganfall ist eine weit verbreitete Volkserkrankung. In der Schweiz sind davon jährlich mehr als 12’000 Menschen betroffen. Wie ein Blitz aus heiterem Himmel trifft der Schlaganfall einen Menschen unerwartet. Mit dramatischen Folgen: Rund 20-30 Prozent der Betroffenen verstirbt. Jenen, die überleben, steht oft eine lange Zeit schwerwiegender Invalidität bevor. Ursache des Schlaganfalls ist meist eine plötzliche Durchblutungsstörung des Gehirns. Diese entsteht, wenn ein Blutgerinnsel eines der Gefässe verschliesst, die das Gehirn mit Blut versorgen. Als Folge erhalten die Nervenzellen zu wenig Sauerstoff und Nährstoffe. Sie werden dadurch oft dauerhaft geschädigt.



In den vergangenen 15 Jahren haben Wissenschaftler vergeblich versucht, die minderdurchbluteten Nervenzellen durch überlebensfördernde Medikamente (sog. Neuroprotektiva) zu schützen. Leider verliefen alle bislang durchgeführten klinischen Studien mit den bisher eingesetzten Substanzen erfolglos.

Die Arbeitsgruppe des Neurologen Dirk M. Hermann von der Universität Zürich hat nun in einer Arbeit, die in der Zeitschrift "Nature Neuroscience" erscheint, nachgewiesen, dass verabreichte überlebensfördernde Medikamente in hohem Masse aktiv aus der geschädigten Hirnregion zurück in die Blutbahn transportiert werden. Die Forscher der Neurologischen Poliklinik konnten im Tierversuch nachweisen, dass das Transporter-Eiweiss Mdr-1 innerhalb weniger Stunden nach einem Schlaganfall im minderdurchbluteten Hirngewebe verstärkt gebildet wird. Mdr-1 ist in der Lage, die verabreichten Medikamente aktiv in die Blutbahn zurückzutransportieren, und verhindert damit, dass sich diese im geschädigten Hirngewebe anreichern. Indem die Wissenschaftler das Transporter-Eiweiss Mdr-1 hemmten, konnten sie die Konzentration verschiedener überlebensfördernder Substanzen bis zum Zehnfachen steigern, was die Wirksamkeit der Medikamente deutlich verbessert.

Aufgrund ihrer Beobachtungen sind die Wissenschaftler der Universität Zürich überzeugt, dass Mdr-1 mit dafür verantwortlich ist, dass zahlreiche Neuroprotektiva in der Schlaganfalltherapie versagt haben. Dies eröffnet wichtige neue Perspektiven für die Schlaganfalltherapie.

Inzwischen verfügt die Pharmaindustrie über nebenwirkungsarme Medikamente, die Mdr-1 sehr selektiv hemmen. Diese Medikamente befinden sich bereits in der klinischen Entwicklungsphase. Durch ihren Einsatz in der Schlaganfalltherapie sollte es gelingen, neuroprotektive Medikamente deutlich effizienter als bisher in das Hirngewebe einzuschleusen und die Erholung des minderdurchbluteten Gewebes dauerhaft sicherzustellen.

Kontakt:
PD Dr. Dirk M. Hermann, Leiter Focal Brain Ischemia Laboratory, Universität Zürich
Tel.: +41 1 255 5526
Fax: +41 1 255 4507
e-Mail: dirk.hermann@usz.ch

Beat Müller | idw
Weitere Informationen:
http://www.unizh.ch/

Weitere Berichte zu: Hirngewebe Schlaganfall Schlaganfalltherapie

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Jenaer Sepsisexperten erforschen im EU-Verbund personalisierte Immuntherapie bei Sepsis
11.02.2020 | Universitätsklinikum Jena

nachricht Maßgeschneiderte Immuntherapie bei Sepsis
10.02.2020 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Transparente menschliche Organe ermöglichen dreidimensionale Kartierungen auf Zellebene

Erstmals gelang es Wissenschaftlerinnen und Wissenschaftlern, intakte menschliche Organe durchsichtig zu machen. Mittels mikroskopischer Bildgebung konnten sie die zugrunde liegenden komplexen Strukturen der durchsichtigen Organe auf zellulärer Ebene sichtbar machen. Solche strukturellen Kartierungen von Organen bergen das Potenzial, künftig als Vorlage für 3D-Bioprinting-Technologien zum Einsatz zu kommen. Das wäre ein wichtiger Schritt, um in Zukunft künstliche Alternativen als Ersatz für benötigte Spenderorgane erzeugen zu können. Dies sind die Ergebnisse des Helmholtz Zentrums München, der Ludwig-Maximilians-Universität (LMU) und der Technischen Universität München (TUM).

In der biomedizinischen Forschung gilt „seeing is believing“. Die Entschlüsselung der strukturellen Komplexität menschlicher Organe war schon immer eine große...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Skyrmionen mögen es heiß – Spinstrukturen auch bei hohen Temperaturen steuerbar

Neue Spinstrukturen für zukünftige Magnetspeicher: Die Untersuchung der Temperaturabhängigkeit des Skyrmion-Hall-Effekts liefert weitere Einblicke in mögliche neue Datenspeichergeräte

Ein gemeinsames Forschungsprojekt der Johannes Gutenberg-Universität Mainz (JGU) und des Massachusetts Institute of Technology (MIT) hat einen weiteren...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

4. Fachtagung Fahrzeugklimatisierung am 13.-14. Mai 2020 in Stuttgart

10.02.2020 | Veranstaltungen

Alternative Antriebskonzepte, technische Innovationen und Brandschutz im Schienenfahrzeugbau

07.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Hauptdarsteller im Meeresboden: Eine bislang kaum beachtete Bakteriengruppe im Rampenlicht

17.02.2020 | Biowissenschaften Chemie

Physik des Lebens - Die Logistik des Molekül-Puzzles

17.02.2020 | Physik Astronomie

Flexibles Fügen und wandlungsfähige Prozessketten: der Schlüssel für effiziente Produktion

17.02.2020 | Interdisziplinäre Forschung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics