Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Ursache für plötzlichen Kindstod entdeckt

14.02.2006


Notfallatmung funktioniert anders als normale Atmung



Wissenschafter der University of Bristol haben Gehirnzellen entdeckt, die Nervenimpulse erzeugen, die für das Schnappen nach Luft entscheidend sind aber nicht für das normale Atmen. Sie gehen davon aus, dass ein Mangel an derartigen Zellen ungeklärte Todesfälle bei Babys erklärbar machen könnte. Der plötzliche Kindstod gehört zu den häufigsten Todesursachen bei Kindern unter einem Jahr. Laut BBC starben 2004 in Großbritannien 349 Kinder an plötzlichem Kindstod. Die Anzahl der Todesfälle sank nach einer Informationskampagne um 75 Prozent. Ab 1991 wurde den Eltern geraten, ihre Kinder auf dem Rücken schlafen zu lassen.

... mehr zu:
»Atmung »Kindstod


Details der Studie wurden in dem Fachmagazin Nature Neuroscience http://www.nature.com/neuro veröffentlicht.

Der plötzliche Kindstod wurde lange Zeit mit einem Versagen des Einatmens in Zusammenhang gebracht. Der Grund für dieses Versagen war jedoch nicht bekannt. Gemeinsam mit amerikanischen Kollegen entdeckten die Wissenschafter, dass viele verschiedene Arten von Gehirnzellen für ein normales Atmen von entscheidender Bedeutung sind. Nur ein kleiner Teil, die so genannten Schrittmacher, spielen eine Rolle beim Atmungsreflex. Stoppt die normale Atmung, wird dieses Hilfssystem aktiviert um ein Schnappen nach Luft auszulösen. Damit wird die Sauerstoffversorgung wieder hergestellt und das erneute Schlagen des Herzens wieder eingeleitet und so eine normale Atmung wiedererlangt.

Die Wissenschafter wiesen nach dass diese Schrittmacherzellen von einem Protein abhängen, das ein winziges Loch oder eine Pore innerhalb der Membran von Zellen entstehen lässt. Sind die Sauerstoffwerte niedrig, öffnet sich diese Pore weiter um den Durchgang von Natriumionen in die Zelle zu erlauben und eröffnet so eine Möglichkeit wie ein Schnappen nach Luft automatisch stattfinden kann. Das Team zeigte, dass eine Blockierung dieser Pore die Schrittmacherfunktion und die Fähigkeit nach Luft zu schnappen beendete. Ein Herzversagen wäre die logische Folge und der Tod nicht mehr zu verhindern. Damit erhöht sich die Wahrscheinlichkeit, dass ein genetischer Defekt dieses speziellen Proteins das Schnappen nach Luft verhindern könnte. Der leitende Wissenschafter Walter St John erklärte, dass mit diesen Studienergebnissen gezeigt wurde, dass die Atmung im Notfall oder das Schnappen nach Luft durch anderen Mechanismen reguliert wird als die normale Atmung.

Michaela Monschein | pressetext.austria
Weitere Informationen:
http://www.bristol.ac.uk
http://www.nature.com/neuro

Weitere Berichte zu: Atmung Kindstod

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht MHH-Forscher entdeckt: Ein Muskelprotein hilft bei der Eizellteilung
14.10.2019 | Medizinische Hochschule Hannover

nachricht Forscher entschlüsseln Wirkung von Ebola-Impfstoff - Virologen der Uniklinik Köln identifizieren neue Antikörper
08.10.2019 | Uniklinik Köln

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neuer Werkstoff für den Bootsbau

Um die Entwicklung eines Leichtbaukonzepts für Sportboote und Yachten geht es in einem Forschungsprojekt der Technischen Hochschule Mittelhessen. Prof. Dr. Stephan Marzi vom Gießener Institut für Mechanik und Materialforschung arbeitet dabei mit dem Bootsbauer Krake Catamarane aus dem thüringischen Apolda zusammen. Internationale Kooperationspartner sind Prof. Anders Biel von der schwedischen Universität Karlstad und die Firma Lamera aus Göteborg. Den Projektbeitrag der THM fördert das Bundesministerium für Wirtschaft und Energie im Rahmen des Zentralen Innovationsprogramms Mittelstand mit 190.000 Euro.

Im modernen Bootsbau verwenden die Hersteller als Grundmaterial vorwiegend Duroplasten wie zum Beispiel glasfaserverstärkten Kunststoff. Das Material ist...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: Ultraschneller Blick in die Photochemie der Atmosphäre

Physiker des Labors für Attosekundenphysik haben erkundet, was mit Molekülen an den Oberflächen von nanoskopischen Aerosolen passiert, wenn sie unter Lichteinfluss geraten.

Kleinste Phänomene im Nanokosmos bestimmen unser Leben. Vieles, was wir in der Natur beobachten, beginnt als elementare Reaktion von Atomen oder Molekülen auf...

Im Focus: Wie entstehen die stärksten Magnete des Universums?

Wie kommt es, dass manche Neutronensterne zu den stärksten Magneten im Universum werden? Eine mögliche Antwort auf die Frage nach der Entstehung dieser sogenannten Magnetare hat ein deutsch-britisches Team von Astrophysikern gefunden. Die Forscher aus Heidelberg, Garching und Oxford konnten mit umfangreichen Computersimulationen nachvollziehen, wie sich bei der Verschmelzung von zwei Sternen starke Magnetfelder bilden. Explodieren solche Sterne in einer Supernova, könnten daraus Magnetare entstehen.

Wie entstehen die stärksten Magnete des Universums?

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2019

14.10.2019 | Veranstaltungen

10. Weltkonferenz der Ecosystem Services Partnership an der Leibniz Universität Hannover

14.10.2019 | Veranstaltungen

Bildung.Regional.Digital: Tagung bietet Rüstzeug für den digitalen Unterricht von heute und morgen

10.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Technologiemodul senkt Ausschussrate von Mikrolinsen auf ein Minimum

14.10.2019 | Informationstechnologie

Diagnostik für alle

14.10.2019 | Biowissenschaften Chemie

Bayreuther Forscher entdecken stabiles hochenergetisches Material

14.10.2019 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics