Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit Hochleistungslasern gezielt Protonen erzeugen

26.01.2006


Physiker der Universität Jena veröffentlichen einmaliges Ergebnis in "Nature"



Mit Protonenstrahlen sollen Krebsgeschwüre in sensiblen Körperregionen, wie dem Kopf, zielgenauer und nebenwirkungsärmer behandelt werden als mit herkömmlichen Röntgenbestrahlungen. Ausgenutzt wird dabei, dass die geladenen Teilchen auf extrem hohe Geschwindigkeiten - bis zu 50 Prozent der Lichtgeschwindigkeit - beschleunigt werden können. Beim Auftreffen auf den Tumor wird der Strahl so stark abgebremst, dass die Protonen ihre Energie direkt im Tumor abgeben, der dadurch gezielt zerstört wird. Bislang wird diese Therapie nur selten angewandt, da sie technisch sehr aufwändig ist. In München wird derzeit das - nach eigenen Angaben - europaweit erste vollklinische Protonentherapie-Zentrum eingerichtet.



Dass es bald weitere Zentren geben könnte, dafür hat ein internationales Physikerteam unter Leitung von Prof. Dr. Roland Sauerbrey (53) jetzt die Grundlagen gelegt. Den Forschern ist es an der Friedrich-Schiller-Universität Jena weltweit zum ersten Mal gelungen, mit einem Hochleistungslaser Protonen zu erzeugen, die eine einheitliche Geschwindigkeit haben und sich damit grundsätzlich zur Protonentherapie eignen. "Damit ist erstmals das Prinzip mit einem Laser demonstriert worden", sagt Prof. Sauerbrey. Der Verlauf des Experiments und seine Ergebnisse werden am Donnerstag (26.01.) in der weltbekannten Fachzeitschrift "Nature" veröffentlicht.

Den Jenaern ist es mit ihrer Versuchsanordnung gelungen, einen gerichteten Protonenstrahl bei 1,3 MeV zu erzeugen. Das Jenaer Ergebnis auf die Protonentherapie übertragen, würde bedeuten, dass der Tumor gezielter bestrahlt werden kann. Außerdem ist die Laseranordnung deutlich handlicher als die bisher eingesetzten Beschleunigeranlagen.

Durchgeführt wurde das komplexe Experiment an der Jenaer Universität mit "Jeti" - einem 10 Terawatt-Titan-Saphir-Laser. Mit Jeti wurde eine hauchdünne (5 Mikrometer = 5 millionstel Meter) Titanfolie gezielt beschossen. Auf dem mit 5-10 Mikrometer irrwitzig kleinen Zielgebiet erzeugt der Laserstahl mit einem enormen Druck von rd. 10 Mrd. Bar ein Plasma und Protonen. Hinter der Folie entsteht ein elektrisches Feld, von dem aus die monoenergetischen Protonen mit extrem hoher Geschwindigkeit ausgesandt werden. Der Jenaer "Kniff" besteht nun darin, die Titanfolie mit einem Kunststoff - einem mit Rhodamin 6 G behandelten Plexiglas - zu beschichten. Dieser winzige Kunststoffspot erzeugt den gleichmäßigen Protonenstrahl und definiert seine Geschwindigkeit. Um beim Beschuss exakt zielen zu können, griffen die Jenaer Physiker erneut in die "Trickkiste". Von der Rückseite wurde die Kunststoffstelle durch einen anderen, kleineren Laser zum Leuchten gebracht, um das Ziel sichtbar zu machen. Erwünschter Nebeneffekt war eine "Reinigung" der Folienrückseite, so dass ausschließlich die Protonen aus dem Kunststoffspot beschleunigt wurden.

"Selbst ein größerer Laser ist einfacher zu handhaben als die bisher eingesetzten Beschleuniger", wirbt Prof. Sauerbrey für eine Nutzung der Forschungsergebnisse in der Medizin. Doch noch ist man von einer Umsetzung ein Stück entfernt. Denn zur Behandlung von Augentumoren wird eine Energie von 70 MeV, für die Behandlung von Kopftumoren sogar rd. 250 MeV benötigt. Die Erhöhung der Energieausbeute sollte jedoch durch einen kräftigeren Laser möglich sein - an der Friedrich-Schiller-Universität wird dafür ein Petawatt-Laser zur Verfügung stehen. Der ermöglicht Leistungen, die so stark sind, "als würde das ganze Licht der Sonne, das auf die Erde trifft, auf ein Haar fokussiert", erläutert der Jenaer Laser-Experte.

"In drei bis vier Jahren sind die benötigten Parameter erreichbar", ist der Direktor des Instituts für Optik und Quantenelektronik der Universität Jena überzeugt. Bis zu einer klinischen Anwendung würden dann noch einmal weitere fünf Jahre benötigt, gibt Sauerbrey den Zeitraum vor. Er sieht die Zukunft der Protonentherapie im Laser, denn dessen eigentliche Ineffizienz sei kein Problem, "da ein bis zwei Schuss ausreichen würden, um den Patienten zu behandeln", ist sich Sauerbrey sicher.

Eine andere Anwendung in der Medizin - "auch das noch Zukunftsmusik", wie Sauerbrey bemerkt - könnte die Erzeugung von kurzlebigen Radionukliden für die Positronen-Emissions-Tomographie (PET) sein. Die leicht radioaktiven Isotope können zwar bereits für diese Anwendung hergestellt und genutzt werden - aber nicht per Laser. Mit ihm wäre "eine Detektion und Behandlung des Tumors mit nur einem Laser möglich", ergänzt Sauerbreys Mitarbeiter Kay-Uwe Amthor. Dies würde den Eingriff verkürzen und sicherer machen.

Doch für die Jenaer Laserforscher stehen zunächst ganz andere Fragen im Mittelpunkt. Sie wollen nun das Experiment mit kleineren Spots und größeren Lasern wiederholen. Dabei sollen dann die erzeugten Protonenstrahlen gleichzeitig zur Plasma-Diagnostik verwendet werden. Denn die Erweiterung der Plasmaphysik ist eines von Sauerbreys vorrangigen Zielen - ohne die Anwendungen aus dem Auge zu verlieren.

Originalpublikation:
"Laser-plasma acceleration of quasi-monoenergetic protons from microstructured targets", H. Schwoerer, S. Pfotenhauer, O. Jäckel, K.-U. Amthor, B. Liesfeld, W. Ziegler, R. Sauerbrey, K. W. D. Ledingham, T. Esirkepov. Nature v. 26.01.2006.

Kontakt:
Prof. Dr. Roland Sauerbrey
Institut für Optik und Quantenelektronik der Universität Jena
Max-Wien-Platz 1, 07743 Jena
Tel.: 03641 / 947200
E-Mail: sauerbrey@ioq.uni-jena.de

Axel Burchardt | idw
Weitere Informationen:
http://www.physik.uni-jena.de/~ioq/

Weitere Berichte zu: Laser MeV Protonenstrahl Protonentherapie

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Virotherapie bei Bauchfellkrebs erfolgreich getestet - Neue biologische Krebstherapie
18.09.2018 | Universitätsklinikum Tübingen

nachricht Mikrobiota im Darm befeuert Tumorwachstum
18.09.2018 | Technische Universität München

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Im Focus: Bio-Kunststoffe nach Maß

Zusammenarbeit zwischen Chemikern aus Konstanz und Pennsylvania (USA) – gefördert im Programm „Internationale Spitzenforschung“ der Baden-Württemberg-Stiftung

Chemie kann manchmal eine Frage der richtigen Größe sein. Ein Beispiel hierfür sind Bio-Kunststoffe und die pflanzlichen Fettsäuren, aus denen sie hergestellt...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: Mit Nano-Lenkraketen Keime töten

Wo Antibiotika versagen, könnten künftig Nano-Lenkraketen helfen, multiresistente Erreger (MRE) zu bekämpfen: Dieser Idee gehen derzeit Wissenschaftler der Universität Duisburg-Essen (UDE) und der Medizinischen Hochschule Hannover nach. Zusammen mit einem führenden US-Experten tüfteln sie an millionstel Millimeter kleinen Lenkraketen, die antimikrobielles Silber zielsicher transportieren, um MRE vor Ort zur Strecke zu bringen.

In deutschen Krankenhäusern führen die MRE jährlich zu tausenden, teils lebensgefährlichen Komplikationen. Denn wer sich zum Beispiel nach einer Implantation...

Im Focus: Schaltung des Stromflusses auf atomarer Skala

Forscher aus Augsburg, Trondheim und Zürich weisen gleichrichtende Eigenschaften von Grenzflächenkontakten im ferroelektrischen Halbleiter nach.

Die Grenzflächen zwischen zwei elektrisch unterschiedlich polarisierten Bereichen im Festkörper werden als ferroelektrische Domänenwände bezeichnet. In der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von den Grundlagen bis zur Anwendung - Internationale Elektrochemie-Tagung in Ulm

18.09.2018 | Veranstaltungen

Unbemannte Flugsysteme für die Klimaforschung

18.09.2018 | Veranstaltungen

Studierende organisieren internationalen Wettbewerb für zukünftige Flugzeuge

17.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Auf der InnoTrans 2018 mit innovativen Lösungen für den Güter- und Personenverkehr

18.09.2018 | Messenachrichten

Von den Grundlagen bis zur Anwendung - Internationale Elektrochemie-Tagung in Ulm

18.09.2018 | Veranstaltungsnachrichten

Extrem klein und schnell: Laser zündet heißes Plasma

18.09.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics