Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Millionen für die Herz-Kreislauf-Forschung

23.11.2005


Die Herz- und Kreislauf-Forschung an der Universität Würzburg wird weiter gestärkt: Rund 1,7 Millionen Euro pro Jahr lässt die Deutsche Forschungsgemeinschaft (DFG) hier ab 1. Januar in einen neuen Sonderforschungsbereich fließen. Sprecher der Einrichtung ist Professor Ulrich Walter, Chef des Instituts für Klinische Biochemie und Pathobiochemie.



Damit sind an der Uni Würzburg ab Beginn 2006 insgesamt acht Sonderforschungsbereiche angesiedelt. Ein Expertengremium hatte den Antrag der Universität auf einen neuen Sonderforschungsbereich (SFB) im Juli begutachtet und für ausgezeichnet befunden. Das Thema des jüngsten Würzburger SFB, den die Forschungsgemeinschaft für zunächst vier Jahre bewilligt hat, heißt "Mechanismen und Bildgebung von Zell-Zell-Wechselwirkungen im kardiovaskulären System".



Den Wechselwirkungen zwischen den Zellen des Herz-Kreislauf-Systems kommt eine entscheidende Bedeutung für die Organdurchblutung, aber auch für Entzündungs-, Heilungs- und Anpassungsprozesse zu, wie Professor Walter erklärt. Ein drohender Herzinfarkt zum Beispiel lasse sich als Störung des sehr dynamischen und strikt regulierten Kontakts von Blutzellen mit Zellen der Blutgefäßwand definieren. Dagegen werde der Schaden, der durch eine mangelnde Durchblutung von Herz oder Gehirn entsteht, stark durch weiße Blutkörperchen mitbestimmt.

Trotz des vorhandenen Wissens seien die Grundlagen solcher Zell-Zell-Wechselwirkungen noch nicht ausreichend erforscht, teilt die DFG mit. Diese Lücke solle der Würzburger Sonderforschungsbereich schließen. Zu dessen Zielen gehört es vor allem, neue diagnostische und therapeutische Ansätze, etwa gegen Herzinfarkte oder Schlaganfälle, zu finden.

Dieser Aufgabe widmen sich Forscher aus vier Fakultäten. Zum einen wollen sie die Grundlagen und Mechanismen von Zell-Zell-Wechselwirkungen im Herz-Kreislauf-System erforschen, zum anderen aber auch die molekulare und funktionelle Bildgebung auf diesem Feld weiter voranbringen.

Erfolge auf diesem Gebiet konnten die Würzburger Wissenschaftler erst jüngst vorweisen. Arbeitsgruppen aus dem Institut für Klinische Biochemie und Pathobiochemie, dem Rudolf-Virchow-Zentrum/DFG-Forschungszentrum für Experimentelle Biomedizin, der Medizinischen Klinik I, der Neurologischen Klinik und der Neuroradiologie konnten nämlich zeigen: Mäuse, denen der Hagemann-Faktor (Faktor XII) der Blutgerinnung fehlt, sind vor der Entwicklung und den Auswirkungen einer Thrombose und vor weiteren Folgen wie Herzinfarkt oder Schlaganfall geschützt.

"Die interdisziplinäre Kooperation von Physik, Chemie und Bioinformatik mit Zellbiologie, Physiologie, Pharmakologie, Klinischer Biochemie sowie Kardiologie und Neurologie ist ohne Zweifel ein herausragendes Merkmal des neuen Sonderforschungsbereichs", so Walter. Charakteristisch sei zudem die Beteiligung vieler Nachwuchswissenschaftler an den Projektgruppen des SFB.

Weitere Informationen: Prof. Dr. Ulrich Walter, T (0931) 201-45144, Fax (0931) 201-45153, E-Mail: uwalter@klin-biochem.uni-wuerzburg.de

Robert Emmerich | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Berichte zu: Biochemie Herzinfarkt Pathobiochemie Schlaganfall

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Schlaganfall: Jeder fünfte bleibt rätselhaft
13.03.2019 | Deutsche Herzstiftung e.V./Deutsche Stiftung für Herzforschung

nachricht Brain Loses the Beat: Aging Changes the Fine-Tuning of Neuronal Rhythms During Sleep
27.02.2019 | Max-Planck-Institut für Bildungsforschung

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Zähmung der Lichtschraube

Wissenschaftler vom DESY und MPSD erzeugen in Festkörpern hohe-Harmonische Lichtpulse mit geregeltem Polarisationszustand, indem sie sich die Kristallsymmetrie und attosekundenschnelle Elektronendynamik zunutze machen. Die neu etablierte Technik könnte faszinierende Anwendungen in der ultraschnellen Petahertz-Elektronik und in spektroskopischen Untersuchungen neuartiger Quantenmaterialien finden.

Der nichtlineare Prozess der Erzeugung hoher Harmonischer (HHG) in Gasen ist einer der Grundsteine der Attosekundenwissenschaft (eine Attosekunde ist ein...

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetische Mikroboote

Nano- und Mikrotechnologie sind nicht nur für medizinische Anwendungen wie in der Wirkstofffreisetzung vielversprechende Kandidaten, sondern auch für die Entwicklung kleiner Roboter oder flexibler integrierter Sensoren. Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) haben mit einer neu entwickelten Methode magnetische Mikropartikel hergestellt, die den Weg für den Bau von Mikromotoren oder die Zielführung von Medikamenten im menschlichen Körper, wie z.B. zu einem Tumor, ebnen könnten. Die Herstellung solcher Strukturen sowie deren Bewegung kann einfach durch Magnetfelder gesteuert werden und findet daher Anwendung in einer Vielzahl von Bereichen.

Die magnetischen Eigenschaften eines Materials bestimmen, wie dieses Material auf das Vorhandensein eines Magnetfeldes reagiert. Eisenoxid ist der...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Goldkugel im goldenen Käfig

„Goldenes Fulleren“: Liganden-geschützter Nanocluster aus 32 Goldatomen

Forschern ist es gelungen, eine winzige Struktur aus 32 Goldatomen zu synthetisieren. Dieser Nanocluster hat einen Kern aus 12 Goldatomen, der von einer Schale...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Größte nationale Tagung 2019 für Nuklearmedizin in Bremen

21.03.2019 | Veranstaltungen

6. Magdeburger Brand- und Explosionsschutztage vom 25. bis 26.3. 2019

21.03.2019 | Veranstaltungen

Teilchenphysik trifft Didaktik und künstliche Intelligenz in Aachen

20.03.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Die Zähmung der Lichtschraube

22.03.2019 | Physik Astronomie

Saarbrücker Forscher erleichtern durch Open Source-Software den Durchblick bei Massen-Sensordaten

22.03.2019 | HANNOVER MESSE

Ketten aus Stickstoff direkt erzeugt

22.03.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics