Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Ergebnisse gegen das Auftreten eines Parkinsonsyndroms

21.11.2005


Eine multizentrische Forschungsinitiative der Neurologischen Universitätskliniken in Kiel, Lübeck und Hamburg-Eppendorf, die in einer aktuellen Ausgabe der Forschungszeitschrift "Brain" veröffentlicht wurde, hat neue Ergebnisse erbracht, wie es das Gehirn schafft, sich gegen das Auftreten eines Parkinsonsyndroms zu wehren.



Mit Hilfe eines modernen Schnittbildverfahrens, der so genannten funktionellen Magnetresonanztomographie, erfassten die Forscher die Gehirnaktivierung bei bestimmten Fingerbewegungen. Dabei verglichen sie gesunde Probanden mit denjenigen, die eine Mutation in einem bestimmten Gen, dem Parkin-Gen aufwiesen. Diese Personen haben ein erhöhtes genetisches Risiko, im Laufe ihres Lebens an Parkinson zu erkranken.



Die Ergebnisse dieser Untersuchungen zeigten, dass bestimmte Fingerbewegungen von beiden Gruppen gleich gut ausgeführt werden konnten. Allerdings konnten die Forscher bei den Risiko-Probanden eine Überaktivierung im motorischen System des Gehirns feststellen. Diese Überaktivierung belegt eine vermehrte "Anstrengung" einzelner Komponenten des motorischen Systems, um die zugrunde liegende noch verborgene Funktionsstörung zu überwinden. Diese Ergebnisse unterstreichen nach Aussage der Forscher eindrucksvoll die Fähigkeit des Gehirns, solche Funktionsstörungen zu kompensieren. Ein besseres Verständnis dieser Kompensationsmechanismen ist daher eine wichtige Grundlage für vorbeugende Therapieansätze, die darauf abzielen, den Ausbruch der Parkinson´schen Erkrankung zu verzögern.

Die Parkinson´sche Erkrankung entsteht durch einen allmählich fortschreitenden Untergang von Nervenzellen im Mittelhirn, die den Botenstoff Dopamin produzieren. Das Absterben dieser Nervenzellen beeinträchtigt die Informationsverarbeitung bei der Steuerung von Bewegungen. Schreitet der Untergang dieser dopaminhaltigen Nervenzellen fort, kann die Funktionsstörung nicht mehr kompensiert werden. Die Patienten entwickeln ein Parkinsonsyndrom mit einer deutlichen Bewegungsverlangsamung, Steifigkeit oder Zittern.

Das Gehirn besitzt jedoch ein beträchtliches Potential, diese Funktionsstörung und so den Ausbruch der Erkrankung zu verhindern. So dauert es mehrere Jahre, bis es zu einem fassbaren Funktionsverlust kommt. Erst wenn 70-80% der dopaminergen Nervenendigungen in den Basalganglien abgestorben sind, entwickeln sich ein Parkinsonsyndrom. Wie es das menschliche Gehirn schafft, trotz der Nervenzelluntergangs über Jahre eine normale Funktion aufrecht zu erhalten, ist bislang noch völlig unklar.

Für Rückfragen steht zur Verfügung:
Prof. Dr. med. Hartwig R. Siebner,
Klinik für Neurologie
Leiter der Arbeitsgruppe "Bildgebung der Bewegungsstörungen"
h.siebner@neurologie.uni-kiel.de

Dr. Anja Aldenhoff-Zöllner | idw
Weitere Informationen:
http://www.uni-kiel.de

Weitere Berichte zu: Nervenzelle Parkinson Parkinsonsyndrom

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Prostatakrebs: Tumorgewebe gezielt behandeln
20.11.2019 | Medizinische Hochschule Hannover

nachricht Gehen verändert das Sehen
20.11.2019 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Teilchen, große Wirkung: Wie Nanoteilchen aus Graphen die Auflösung von Mikroskopen verbessern

Konventionelle Lichtmikroskope können Strukturen nicht mehr abbilden, wenn diese einen Abstand haben, der kleiner als etwa die Lichtwellenlänge ist. Mit „Super-resolution Microscopy“, entwickelt seit den 80er Jahren, kann man diese Einschränkung jedoch umgehen, indem fluoreszierende Materialien eingesetzt werden. Wissenschaftlerinnen und Wissenschaftler am Max-Planck-Institut für Polymerforschung haben nun entdeckt, dass aus Graphen bestehende Nano-Moleküle genutzt werden können, um diese Mikroskopie-Technik zu verbessern. Diese Nano-Moleküle bieten eine Reihe essentieller Vorteile gegenüber den bisher verwendeten Materialien, die die Mikroskopie-Technik noch vielfältiger einsetzbar machen.

Mikroskopie ist eine wichtige Untersuchungsmethode in der Physik, Biologie, Medizin und vielen anderen Wissenschaften. Sie hat jedoch einen Nachteil: Ihre...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Mit künstlicher Intelligenz zum besseren Holzprodukt

Der Empa-Wissenschaftler Mark Schubert und sein Team nutzen die vielfältigen Möglichkeiten des maschinellen Lernens für holztechnische Anwendungen. Zusammen mit Swiss Wood Solutions entwickelt Schubert eine digitale Holzauswahl- und Verarbeitungsstrategie unter Verwendung künstlicher Intelligenz.

Holz ist ein Naturprodukt und ein Leichtbauwerkstoff mit exzellenten physikalischen Eigenschaften und daher ein ausgezeichnetes Konstruktionsmaterial – etwa...

Im Focus: Eine Fernsteuerung für alles Kleine

Atome, Moleküle oder sogar lebende Zellen lassen sich mit Lichtstrahlen manipulieren. An der TU Wien entwickelte man eine Methode, die solche „optischen Pinzetten“ revolutionieren soll.

Sie erinnern ein bisschen an den „Traktorstrahl“ aus Star Trek: Spezielle Lichtstrahlen werden heute dafür verwendet, Moleküle oder kleine biologische Partikel...

Im Focus: Atome hüpfen nicht gerne Seil

Nanooptische Fallen sind ein vielversprechender Baustein für Quantentechnologien. Forscher aus Österreich und Deutschland haben nun ein wichtiges Hindernis für deren praktischen Einsatz aus dem Weg geräumt. Sie konnten zeigen, dass eine besondere Form von mechanischen Vibrationen gefangene Teilchen in kürzester Zeit aufheizt und aus der Falle stößt.

Mit der Kontrolle einzelner Atome können Quanteneigenschaften erforscht und für technologische Anwendungen nutzbar gemacht werden. Seit rund zehn Jahren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage 2020: „Mach es einfach!“

18.11.2019 | Veranstaltungen

Humanoide Roboter in Aktion erleben

18.11.2019 | Veranstaltungen

1. Internationale Konferenz zu Agrophotovoltaik im August 2020

15.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kleine Teilchen, große Wirkung: Wie Nanoteilchen aus Graphen die Auflösung von Mikroskopen verbessern

20.11.2019 | Materialwissenschaften

Eisberge als Nährstoffquelle - Führt der Klimawandel zu mehr Eisendüngung im Ozean?

20.11.2019 | Geowissenschaften

Gehen verändert das Sehen

20.11.2019 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics