Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nachhilfe für die Strahlentherapie

21.10.2005


Verbessert eine Kombination von Strahlentherapie und der Blockade von Integrinen, Schlüsselmolekülen der Angiogenese, die Heilungschancen bei Krebs?



Immer mehr Krebspatienten können heute durch Strahlentherapie - allein oder in Kombination mit Chirurgie oder Chemotherapie - geheilt werden. Im Deutschen Krebsforschungszentrum suchen Wissenschaftler der Klinischen Kooperationseinheit Strahlentherapie unter der Leitung von Professor Dr. Dr. Peter Huber nach Möglichkeiten, die Wirksamkeit dieser Behandlungsform weiter zu verbessern. Eine Achillesferse des Tumors, die die Forscher dabei anvisieren, ist die Neubildung von Blutgefäßen, Angiogenese genannt.



Tumoren sind ab der Größe eines Stecknadelkopfes auf Versorgung durch die Blutgefäße angewiesen. Werden ihnen diese Lebensadern abgeschnitten, kommt das Tumorwachstum zum Stillstand. Um die Gefäßneubildung zu unterdrücken, sind Integrine ein geeigneter Angriffspunkt. Die rund 20 Mitglieder dieser Proteinfamilie koordinieren die Wechselwirkung von Zellen untereinander und regulieren den Kontakt mit der umgebenden Proteinmatrix. Bei der Formierung neuer Blutgefäße sind Integrine unverzichtbar.
Die Heidelberger Forscher testeten erstmals eine Kombination aus Bestrahlung und dem Medikament S247, einer Substanz, die die Funktion der Integrine gezielt blockiert. Bei Untersuchungen in der Kulturschale wirkt die Kombitherapie sowohl gegen Tumorzellen als auch gegen gefäßbildende Endothelzellen wesentlich besser als Bestrahlung allein. Die Kombination wurde auch an Mäusen geprüft, denen Tumoren des Menschen (Glioblastom, Haut- und Prostatakrebs) transplantiert worden waren. Hier verlangsamten beide Behandlungsformen gemeinsam das Tumorwachstum ohne erkennbare Toxizität mehr als doppelt so stark wie eine der Einzeltherapien. Außerdem bildeten Tumoren der kombiniert behandelten Tiere deutlich weniger Blutgefäße.


Wie die Wissenschaftler zeigten, rührt der synergistische Effekt der Kombination daher, dass die Integrin-Blockade einen Angiogenese fördernden Effekt der Strahlen neutralisiert: Als Überlebensstrategie reagieren Endothelzellen mit einer Steigerung ihrer Integrinproduktion auf die Bestrahlung. Dadurch dringen sie leichter in das Tumorgewebe vor. Der Wirkstoff S247 wirkt diesem Effekt entgegen, außerdem fördert die Substanz den programmierten Zelltod von Endothelzellen.

Die Forscher ermitteln nun den optimalen zeitlichen Abstand zwischen Medikament und Bestrahlung, um anschließend in klinischen Studien zu prüfen, ob die Integrin-Inhibitoren auch bei Patienten die Heilungschancen einer Krebstherapie verbessern.

Dr. Julia Rautenstrauch | idw
Weitere Informationen:
http://www.dkfz.de

Weitere Berichte zu: Angiogenese Blutgefäß Endothelzelle Strahlentherapie

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Narkolepsie: Wissenschaftler entlarven den Übeltäter der rätselhaften Schlafkrankheit
20.09.2018 | Universitätsspital Bern

nachricht Virotherapie bei Bauchfellkrebs erfolgreich getestet - Neue biologische Krebstherapie
18.09.2018 | Universitätsklinikum Tübingen

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht

Wieso sind manche Metalle magnetisch? Diese einfache Frage ist wissenschaftlich gar nicht so leicht fundiert zu beantworten. Das zeigt eine aktuelle Arbeit von Wissenschaftlern des Forschungszentrums Jülich und der Universität Halle. Den Forschern ist es zum ersten Mal gelungen, in einem magnetischen Material, in diesem Fall Kobalt, die Wechselwirkung zwischen einzelnen Elektronen sichtbar zu machen, die letztlich zur Ausbildung der magnetischen Eigenschaften führt. Damit sind erstmals genaue Einblicke in den elektronischen Ursprung des Magnetismus möglich, die vorher nur auf theoretischem Weg zugänglich waren.

Für ihre Untersuchung nutzten die Forscher ein spezielles Elektronenmikroskop, das das Forschungszentrum Jülich am Elettra-Speicherring im italienischen Triest...

Im Focus: Erstmals gemessen: Wie lange dauert ein Quantensprung?

Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Der Truck der Zukunft

Lastkraftwagen (Lkw) sind für den Gütertransport auch in den kommenden Jahrzehnten unverzichtbar. Wissenschaftler und Wissenschaftlerinnen der Technischen Universität München (TUM) und ihre Partner haben ein Konzept für den Truck der Zukunft erarbeitet. Dazu zählen die europaweite Zulassung für Lang-Lkw, der Diesel-Hybrid-Antrieb und eine multifunktionale Fahrerkabine.

Laut der Prognose des Bundesministeriums für Verkehr und digitale Infrastruktur wird der Lkw-Güterverkehr bis 2030 im Vergleich zu 2010 um 39 Prozent steigen....

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungen

Forum Additive Fertigung: So gelingt der Einstieg in den 3D-Druck

21.09.2018 | Veranstaltungen

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Tiefseebergbau: Forschung zu Risiken und ökologischen Folgen geht weiter

21.09.2018 | Geowissenschaften

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungsnachrichten

Optimierungspotenziale bei Kaminöfen

21.09.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics