Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die motorische Seite des Räumlichen Sehens

11.04.2001


... mehr zu:
»Augenbewegung »Netzhaut
Um Stereosehen zu ermöglichen, muss das Gehirn zusammengehörende Bildelemente auf den Netzhäuten der beiden Augen finden und anschließend aus ihrer relativen Lage die räumliche Tiefe des zugehörenden Objektes
bestimmen. Solange die Augen sich dabei nicht bewegen, ist es aus geometrischen Gründen nicht nötig, die ganze Netzhaut nach zusammengehörenden Elementen abzusuchen - es genügt die Suche entlang sogenannter epipolarer Linien.

Für jede Stelle in der Netzhaut des einen Auges gibt es eine definierte epipolare Linie im anderen Auge. Da die Suche nach zusammengehörenden Bildelementen in komplizierten Umgebungen (oder beim Betrachten sogenannter Random-Dot-Stereogramme) sehr aufwendig werden kann, ist die Vereinfachung durch den Übergang von einer zweidimensionalen Suche über die ganze Netzhaut zu einer eindimensionalen entlang einer Linie oder eines schmalen Streifens beträchtlich. Die Standardmodelle des Stereosehens nahmen daher an, dass das Gehirn diese Vereinfachung kennt und nutzt.
Tatsächlich aber ändert sich die Lage der epipolaren Linien auf der Netzhaut, wenn die Augen sich bewegen. Das heißt, derselbe Lichtfleck auf der linken Netzhaut erfordert eine Suche entlang verschiedener epipolarer Linien auf der rechten, abhängig von der Augenposition.

Das Gehirn hat nun zwei grundsätzliche Möglichkeiten: entweder es berechnet aus der jeweiligen Augenposition die Lage der epipolaren Linien und benutzt die sich daraus ergebende Vereinfachung der Suche - oder es sucht in den zweidimensionalen retinalen Zonen, durch die die epipolaren Linien wandern, wenn sich die Augen bewegen.

Die beteiligten Wissenschaftler haben Random-Dot-Stereogramme entwickelt, mit denen sie zeigen können, dass das Gehirn der zweiten Strategie folgt. Der Teil des visuellen Systems, der gleichartige Bildelemente findet und einander zuordnet, sucht nicht entlang der epipolaren Linien. Es kann dort nicht suchen, weil er nicht weiß, wo auf der Netzhaut sie sich befinden. Die Suche muss daher mindestens jene retinale Zone berücksichtigen, in der die epipolaren Linien für verschiedene Augenposition liegen können.

Die Größe dieser retinalen Zonen hängt vom genauen Muster der Augenbewegungen ab: Während die horizontale und vertikale Blickrichtung vom fixierten Ziel vorgegeben werden, können die Augen zusätzlich um die Blicklinie rotieren. Im 19. Jahrhundert bereits hat man herausgefunden, dass diese Rotation um die Blicklinie, die sogenannte Torsion, ebenfalls vom Ziel vorgegeben wird. Unerwarteterweise nehmen die Augen des Menschen allerdings unterschiedliche Torsionsstellungen ein, abhängig davon, ob das betrachtete Objekt weit entfernt oder nahe ist. Während das Muster der Torsionswinkel für entfernte Objekte - Listings Gesetz - recht gut verstanden ist und zahlreiche Vorteile beschrieben wurden, die mit ihm verbunden sind, gab es bislang keinen überzeugenden Grund, warum die Augen sich gegenüber nahen Zielen anders verhalten sollten - zumal die Argumente für Listings Gesetz auch hier gelten.

Die Simulationen haben gezeigt, dass die Abweichung von Listings Gesetz, die Menschen gegenüber nahen Zielen zeigen, die Suchzonen auf der Retina verkleinern. Das Oculo-motorische System, das die Augenbewegungen steuert, weicht vom vorteilhaften Listingschen Gesetz ab, um das Stereosehen zu vereinfachen.

Es konnte gezeigt werden, dass das senso-motorische System, das die Augen steuert, um Stereosehen zu ermöglichen, nicht vollständig verstanden werden kann ohne Blick auf die Interaktion der sensorischen und motorischen Teilsysteme. Lässt man bei der Untersuchung des Stereosehens die Augenbewegungen unberücksichtigt, unterschätzt man die Komplexität der Suche nach zusammengehörenden Bildelementen. Vernachlässigt man die Anforderungen der sensorischen Seite, erscheinen die Muster der Augenbewegungen unverständlich und sogar kontraproduktiv, weil sie von einem gut verstandenen Optimalmuster (Listings Gesetz) abweichen.

Es erscheint sehr wahrscheinlich, dass die hier exemplarisch gezeigte Bedeutung senso-motorischer Interaktion ein generelles Prinzip beleuchtet und dass die Untersuchung des Zusammenwirkens der Wahrnehmung mit der Ausführung zu besserem Verständnis zahlreicher Gehirnsysteme führen kann. Von klinischem Interesse sind die Ergebnisse möglicherweise für die Rehabilitation von Patienten mit Strabismus (Schielen).

Ansprechpartner für nähere Informationen

Universitätsklinikum Tübingen
Neurologische Universitätsklinik
Prof. Dr. Michael Fetter
Tel. 0 72 02 / 61 36 06
E-Mail: Michael.Fetter@kkl.srh.de


** "The motor side of depth vision"
by Kai Schreiber et al. (Depts of Physiology and Medicine, Univ. of Toronto AND Canadian Insts. for Health Rsch, York Univ, Toronto), Michael Fetter (Dept of Neurology, University Hospital, Tubingen); Nature, 12 April 2001

Dr. Ellen Katz | idw

Weitere Berichte zu: Augenbewegung Netzhaut

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Kokosöl verlängert Leben bei peroxisomalen Störungen
20.06.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Überdosis Calcium
19.06.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics