Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kampf den Freibeutern - Wie der Körper virale Moleküle erkennt

01.02.2008
Viren sind raffinierte Parasiten: Weil sie sich nicht selbst vermehren können, nutzen sie ihre Wirtszellen als Fabriken für den viralen Nachwuchs. Dazu schleusen sie oft nur die Bauanleitung für virale Proteine in ihre unfreiwilligen Gastgeber.

Meist bestehen diese Bauanleitungen aus RNA, eine unserem Erbmolekül DNA nahe verwandte Nukleinsäure. RNA spielt aber auch in den Zellen höherer Organismen eine wichtige Rolle - und ist damit nicht offenkundig als fremdes Material erkennbar. Dennoch sind die Wirtszellen den Parasiten nicht hilflos ausgeliefert.

Ein bestimmtes zelluläres Protein erkennt die fremde RNA und löst Alarm aus. Das aktiviert Abwehrzellen des Immunsystems und löst letztlich Apoptose aus, den programmierten Selbstmord der Zelle. Ein internationales Forscherteam unter der Leitung von Professor Karl-Peter Hopfner, Genzentrum der Ludwig-Maximilians-Universität (LMU) München, konnte nun zeigen, welche biochemischen Mechanismen der Erkennung viraler RNA zugrunde liegen. Die als Titelgeschichte der aktuellen Ausgabe der Fachzeitschrift "Molecular Cell" veröffentlichte Arbeit zeigt, dass ein bestimmter Bereich des so genannten RIG-I-Proteins für die Erkennung wichtig ist, und entschlüsselt die dreidimensionale Struktur dieser Domäne.

Jede Zelle benötigt zum Leben ein ganzes Arsenal von Proteinen. Deren Bauanleitung ist in den Genen gespeichert, das sind Abschnitte des Erbmoleküls DNA im Zellkern. Soll ein bestimmtes Protein produziert werden, erfolgt in einem ersten Schritt die Abschrift des zugehörigen Gen in ein dazu passendes RNA-Molekül. Über Poren in der Membran des Zellkerns gelangt dieses in das Zellplasma, wo die Proteinfabriken der Zelle, so genannte Ribosomen, getreu der Bauanleitung die dazu passenden Proteine herstellen. "Diese Fließbandproduktion können Viren aber auch für ihre eigenen Zwecke nutzen", sagt Hopfner. "Die Parasiten bestehen in der Regel nur aus einem RNA-Molekül als Erbgut, das von einer kleinen Proteinkapsel umhüllt ist. Die RNA enthält in erster Linie die Bauanleitungen für neue Kapselproteine. Gelangt sie in eine Wirtszelle, wird diese umprogrammiert, so dass die Zellmaschinerie hauptsächlich neue Viruskapseln produziert. Diese werden mit viraler RNA gefüllt - und eine neue Virengeneration befällt weitere Zellen."

... mehr zu:
»Parasit »Protein »RNA »Wirtszelle »Zelle

Menschliche Wirtszellen sind den viralen Freibeutern aber nicht wehrlos ausgeliefert: Ein bestimmtes Protein, RIG-I, erkennt die fremde RNA und löst Alarm aus. Dann wird der Botenstoff Beta-Interferon produziert, der bestimmte Killerzellen aktiviert - die Vorhut der Körperabwehr. "Außerdem wird durch diese Reaktion das zelluläre Selbstmord-Programm eingeleitet", berichtet Hopfner. "Ohne Wirtszelle aber können sich die Viren nicht mehr vermehren." RIG-I unterscheidet virale RNA von zelleigener RNA anhand eines bestimmten chemischen Signals, ein so genanntes Triphosphat, das sich am Anfang des fadenförmigen RNA-Moleküls befindet. Auch die RNA im Zellkern trägt das Triphosphat-Ende. Auf dieses wird dann aber - anders als beim viralen Gegenstück - eine molekulare Kappe, das "Cap", gesetzt.

Dem Forscherteam gelangen nun erste Einblicke in die molekularen Mechanismen, die der Erkennung des RNA-Triphosphats zugrunde liegen. Dabei zeigte sich, dass ein bestimmter Bereich des RIG-I-Proteins für diesen Vorgang entscheidend ist. Nachdem sie Triphosphate erkannt hat, legt diese regulatorische Domäne einen molekularen Schalter um: Sie verbindet zwei RIG-I-Proteine in ein Tandem. "Wir glauben, dass dieser molekulare Schalter eine wesentliche Rolle spielt in der Signalkette hin zur Produktion von Beta-Interferon", so Hopfner. Zudem ist RIG-I eine ATPase, kann also die Energie aus der Spaltung des ATP-Moleküls nutzen. In diesem Fall wohl zur Erkennung der viralen RNAs sowie zur Einleitung der Immunantwort durch das Beta-Interferon. "Noch ist aber unklar, warum genau die Spaltung des ATPs nötig ist", betont Hopfner. "Denkbar ist, dass weitere Elemente viraler RNA wichtig sind, etwa um den Erkennungsprozess noch genauer und sicherer zu machen."

Mit Hilfe der Röntgenstrukturanalyse konnte zudem die dreidimensionale Struktur dieses Bereichs aufgeklärt werden. "Dabei gab es ein überraschendes Ergebnis", so Sheng Cui, einer der beiden Erstautoren der Studie. "Die Domäne ist Elementen in anderen Signalübertragungswegen der Zelle, den so genannten kleinen G-Proteinen, sehr ähnlich." Der Grund dafür ist noch nicht bekannt. Meist allerdings weist strukturelle Ähnlichkeit auf eine funktionale Gemeinsamkeit hin: Ähnliche Proteinbereiche erfüllen oft also ähnliche Aufgaben. Ob dies auch hier der Fall ist, soll die Fortführung des Projekts erweisen. "Es wäre denkbar, dass die Aktivierungsmechanismen von ganz unterschiedlichen Wegen der Signalübertragung in der Zelle auf atomarer Ebene mehr Gemeinsamkeiten haben als bisher angenommen", meint Hopfner. "Unsere Ergebnisse sind aber auf jeden Fall ein erster Schritt mit spannenden Ergebnissen - die eine ganze Reihe neuer Fragen aufwerfen."

An der vorliegenden Arbeit waren neben Hopfners Mitarbeitern die Forschungsgruppen von Professor Karl-Klaus Conzelmann, LMU, von Dr. Anne Krug, TU München, sowie Professor Takashi Fujita der Universität Tokyo, Japan, beteiligt. Die Studie wurde vor allem im Rahmen des Sonderforschungsbereichs (SFB) 455 "Virale Funktionen und Immunmodulation" gefördert sowie durch die Exzellencluster "Center for Integrated Protein Science (CiPSM)" und "Munich Center for Advanced Photonics (MAP)", denen Hopfner angehört. Ihm ist dabei vor allem ein Gesichtspunkt wichtig: "Unsere Studie zeigt wieder einmal, welch hervorragende Kooperationsmöglichkeiten es in München gibt, gerade auch für interdisziplinäre Untersuchungen."

Publikation:
"The C-Terminal Regulatory Domain Is the RNA 5´-Triphosphate Sensor of RIG-I",
Sheng Cui, Katharina Eisenächer, Axel Kirchhofer, Krzysztof Brzózka, Alfred Lammens, Katja Lammens, Takashi Fujita, Karl-Klaus Conzelmann, Anne Krug, and Karl-Peter Hopfner,
Molecular Cell, 1. Februar 2008, Bd. 29, S. 1-11
DOI 10.1016/j.molcel.2007.10.032
Ansprechpartner:
Professor Dr. Karl-Peter Hopfner
Genzentrum der LMU
Tel.: 089 / 2180-76953
Fax: 089 / 2180-76999
E-Mail: hopfner@lmb.uni-muenchen.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Berichte zu: Parasit Protein RNA Wirtszelle Zelle

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Differenzierte Bildgebung für bessere Diagnosen bei Brustkrebs
21.01.2020 | Universität Zürich

nachricht Gendefekt bei Zellbaustein Aktin sorgt für massive Entwicklungsstörungen
20.01.2020 | Medizinische Hochschule Hannover

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Struktur und Funktion von Lichtrezeptor bei Cyanobakterien aufgeklärt

Chemie: Veröffentlichung in PNAS

Bestimmte Proteine dienen Pflanzen und auch Cyanobakterien als Lichtrezeptoren. Das Team des Center for Structural Studies (CSS) der Heinrich-Heine-Universität...

Im Focus: Protein pores packed in polymers make super-efficient filtration membranes

A multidisciplinary team of engineers and scientists has developed a new class of filtration membranes for a variety of applications, from water purification to small-molecule separations to contaminant-removal processes, that are faster to produce and higher performing than current technology. This could reduce energy consumption, operational costs and production time in industrial separations.

Led by Manish Kumar, associate professor in the Cockrell School of Engineering at The University of Texas at Austin, the research team describes their new...

Im Focus: Schnellster hochpräziser 3D-Drucker

3D-Drucker, die im Millimeterbereich und größer drucken, finden derzeit Eingang in die unterschiedlichsten industriellen Produktionsprozesse. Viele Anwendungen benötigen jedoch einen präzisen Druck im Mikrometermaßstab und eine deutlich höhere Druckgeschwindigkeit. Forscherinnen und Forscher des Karlsruher Instituts für Technologie (KIT) haben ein System entwickelt, mit dem sich in bisher noch nicht erreichter Geschwindigkeit hochpräzise, zentimetergroße Objekte mit submikrometergroßen Details drucken lassen. Dieses System präsentieren sie in einem Sonderband der Zeitschrift Advanced Functional Materials. (DOI: 10.1002/adfm.201907795).

Um nicht nur die Geschwindigkeit, sondern auch die Zuverlässigkeit ihres Aufbaus zu demonstrieren, haben die Forscherinnen und Forscher eine 60 Kubikmillimeter...

Im Focus: Wie man ein Bild von einem Lichtpuls macht

Um die Form von Lichtpulsen zu messen, brauchte man bisher komplizierte Messanlagen. Ein Team von MPI Garching, LMU München und TU Wien schafft das nun viel einfacher.

Mit modernen Lasern lassen sich heute extrem kurze Lichtpulse erzeugen, mit denen man dann Materialien untersuchen oder sogar medizinische Diagnosen erstellen...

Im Focus: Ein ultraschnelles Mikroskop für die Quantenwelt

Was in winzigen elektronischen Bauteilen oder in Molekülen geschieht, lässt sich nun auf einige 100 Attosekunden und ein Atom genau filmen

Wie Bauteile für künftige Computer arbeiten, lässt sich jetzt gewissermaßen in HD-Qualität filmen. Manish Garg und Klaus Kern, die am Max-Planck-Institut für...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

HDT-Tagung: Sensortechnologien im Automobil

24.01.2020 | Veranstaltungen

Tagung befasst sich mit der Zukunft der Mobilität

22.01.2020 | Veranstaltungen

ENERGIE – Wende. Wandel. Wissen.

22.01.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Intelligentes Robotersystem an der TU Bergakademie Freiberg verbessert Trinkwasserkontrolle in Binnengewässern

29.01.2020 | Informationstechnologie

Struktur und Funktion von Lichtrezeptor bei Cyanobakterien aufgeklärt

29.01.2020 | Biowissenschaften Chemie

Unerwartetes Materialverhalten: Vom 2D-Kristall zum 1D-Draht

29.01.2020 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics