Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Warum zu viel Salz den Blutdruck erhöht

17.12.2007
Wissenschaftler des Heidelberger Instituts für Pharmakologie entdecken zwei Signalwege als grundlegenden Mechanismus / Publikation in "Nature Medicine"

Viel Salz im Essen kann zu hohem Blutdruck führen. Einen Mechanismus der krankmachenden Wirkung haben Wissenschaftler des Instituts für Pharmakologie der Universität Heidelberg jetzt im Tiermodell entdeckt: Salz fördert die Bildung bestimmter Botenstoffe in der Muskulatur von Blutgefäßen, die die Muskelzellen zur Kontraktion bringen. Durch den erhöhten Widerstand in den Blutgefäßen erhöht sich der Blutdruck.

Die Heidelberger Wissenschaftler unter Leitung von Professor Dr. Stefan Offermanns, Direktor des Heidelberger Instituts für Pharmakologie, sehen hier einen neuen Ansatzpunkt für die Behandlung des Bluthochdrucks (Hypertonie), die Vorteile gegenüber den herkömmlichen Arzneimitteln hätte: Sie schützt vor zu hohem Blutdruck, birgt aber nicht das Risiko einer überschießenden Blutdrucksenkung, wie bei herkömmlichen Medikamenten.

Jeder vierte hat hohen Blutdruck / Zu viel Salz in Fertigprodukten

... mehr zu:
»Blutdruck »Hypertonie

Mehr als ein Viertel der Weltbevölkerung leidet an zu hohem Blutdruck, einem der wichtigsten Risikofaktoren für Herz-Kreislauf-Erkrankungen wie Schlaganfall und Herzinfarkt. Eine wesentliche Ursache der Hypertonie, die erhöhte Salzzufuhr, hat in den letzten Jahrzehnten weiter zugenommen. In den Industrieländern nimmt jeder Erwachsene zwischen 5 und 10 g Kochsalz pro Tag zu sich, wobei 80 Prozent dieser Salzmengen den Nahrungsmitteln schon während der industriellen Verarbeitung zugesetzt werden.

"Wie der Körper akut auf die Einnahme großer Salzmengen reagiert, ist bekannt", erklärt Professor Offermanns. Um möglichst viel Salz und Wasser über die Nieren auszuscheiden, wird der Blutdruck erhöht. Auf welchem Mechanismus die Erhöhung des Gefäßwiderstands beruht, war bislang jedoch nicht klar. Die Heidelberger Wissenschaftler haben nun festgestellt, dass verschiedene gefäßkontrahierende Mediatoren, also Botenstoffe, dafür verantwortlich sind: Sie beeinflussen über so genannte G-Protein-gekoppelte Rezeptoren die Gefäßmuskulatur.

Kein hoher Blutdruck bei genetisch veränderten "Knockout-Mäusen" trotz erhöhter Salzzufuhr

Im Modellversuch an der Maus konnten die Wissenschaftler zeigen, dass die gefäßverengenden Mediatoren über Rezeptoren auf den Gefäßmuskelzellen zwei parallele Signalwege aktivieren. Einer der beiden Signalwege wird durch die G Proteine Gq/G11 vermittelt und führt zu einer höheren Calcium Konzentration in der Gefäßmuskelzelle; der andere Signalweg wird durch die G Proteine G12 und G13 vermittelt und führt zur Aktivierung des Proteins Rho.

In genetischen Mausmodellen ("Knockout-Mäusen") wurde je einer der beiden Signalwege in der Gefäßmuskulatur gezielt ausgeschaltet. Bei Blockade des Gq/G11-Signalwegs nahm der Basisblutdruck der Tiere deutlich ab, und die Tiere entwickelten nach vermehrter Salzgabe keine Hypertonie. Wurde hingegen der zweite, durch G12/G13 vermittelte Signalweg blockiert, so blieb zwar der normale Blutdruck unverändert, aber auch diese Tiere entwickelten keinen nennenswerten Bluthochdruck bei salzreicher Ernährung.

"Diese Befunde zeigen, dass der Gq/G11-vermittelte Signalweg sowohl für die Aufrechterhaltung des normalen Blutdrucks als auch für die Entwicklung einer salzabhängigen Hypertonie erforderlich ist", erklärt Professor Offermanns. Dagegen spiele der G12/G13-vermittelte Signalweg interessanterweise keine Rolle bei der Aufrechterhaltung des normalen Blutdrucks, sei aber unabdingbar für die Entwicklung einer salzinduzierten Hypertonie. Die Entschlüsselung dieses differenzierten Mechanismus soll nun als Ausgangspunkt für die Entwicklung neuer Medikamente genutzt werden.

Literatur:

Wirth, A., Benyó, Z., Lukasova, M., Leutgeb, B., Wettschureck, N., Gorbey, S., ?rsy, P., Horváth, B., Maser-Gluth, C., Greiner, E., Lemmer, B., Schütz, G., Gutkind, S., Offermanns, S. G12/G13-LARG-mediated signalling in vascular smooth muscle is required for salt-induced hypertension. Nat. Med. (advance online publication)

Kontakt:

Prof. Dr. Stefan Offermanns
Institut für Pharmakologie
Universität Heidelberg
Im Neuenheimer Feld 366
69120 Heidelberg
Tel.: 06221 / 54 8246/7
E-mail: Stefan.Offermanns@urz.uni-heidelberg.de
Bei Rückfragen von Journalisten:
Dr. Annette Tuffs
Presse- und Öffentlichkeitsarbeit des Universitätsklinikums Heidelberg
und der Medizinischen Fakultät der Universität Heidelberg
Im Neuenheimer Feld 672
69120 Heidelberg
Tel.: 06221 / 56 45 36
Fax: 06221 / 56 45 44
E-Mail: annette.tuffs(at)med.uni-heidelberg.de

Dr. Annette Tuffs | idw
Weitere Informationen:
http://www.pharmakologie.uni-hd.de
http://www.klinikum.uni-heidelberg.de/index.php?id=15presse

Weitere Berichte zu: Blutdruck Hypertonie

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht MHH-Forscher entdeckt: Ein Muskelprotein hilft bei der Eizellteilung
14.10.2019 | Medizinische Hochschule Hannover

nachricht Forscher entschlüsseln Wirkung von Ebola-Impfstoff - Virologen der Uniklinik Köln identifizieren neue Antikörper
08.10.2019 | Uniklinik Köln

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

VR-/AR-Technologien aus der Nische holen

18.10.2019 | Veranstaltungen

Ein Marktplatz zur digitalen Transformation

18.10.2019 | Veranstaltungen

Wenn der Mensch auf Künstliche Intelligenz trifft

17.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Insekten teilen den gleichen Signalweg zur dreidimensionalen Entwicklung ihres Körpers

18.10.2019 | Biowissenschaften Chemie

Volle Wertschöpfungskette in der Mikrosystemtechnik – vom Chip bis zum Prototyp

18.10.2019 | Physik Astronomie

Innovative Datenanalyse von Fraunhofer Austria

18.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics