Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Automatische Analyse der Gefäße des gesamten Gehirns

12.03.2020

Erkrankungen des Gehirns gehen oft mit typischen Veränderungen der Blutgefäße einher. Münchner Wissenschaftlerinnen und Wissenschaftler des LMU Klinikums, des Helmholtz Zentrums München und der Technischen Universität München (TUM) haben jetzt ein Verfahren vorgestellt, mit dem sich die Strukturen und eventuelle krankhafte Veränderungen aller Gefäße – auch der feinsten Kapillaren – analysieren lassen. Sie haben mit diesem Verfahren, das auf einer Kombination von biochemischen Methoden und Künstlicher Intelligenz beruht, zunächst die gesamten Gefäße im Gehirn einer Maus dargestellt.

Veränderungen in den Blutgefäßen kennzeichnen etliche schwere Hirnerkrankungen – von der traumatischen Hirnverletzung bis zum Schlaganfall. Selbst bei Erkrankungen wie der Alzheimerschen Demenz sind die feinen Kapillaren verändert.


Das Gehirn einer Maus - aufgenommen mit Fluoreszenz-Mikroskopie mittels "Tissue Clearing" - einer Technik, die erstmals die großen und kleinen Gehirngefäße gleichzeitig sichtbar gemacht hat.

Ertürk Lab / Institut für Schlaganfall- und Demenzforschung

Kurzum: Die Analyse der Blutgefäße ist wesentlich, um sowohl die normale als auch die krankhafte Gehirnfunktion zu verstehen. „Wir sind diesem Ziel jetzt deutlich näher gekommen“, erklärt Ali Ertürk, Direktor des Instituts für Tissue Engineering und Regenerative Medizin am Helmholtz Zentrum München und Principal Investigator am Institut für Schlaganfall- und Demenzforschung des LMU Klinikums.

Organe werden durchsichtig

Zunächst ist es Ertürks Team gelungen, mit hochauflösender Fluoreszenz-Mikroskopie, das Gefäßsystem der Gehirne von Mäusen abzubilden, ohne die Proben kleinteilig zerschneiden zu müssen. Dafür hat das Team die Technik des „Tissue Clearing“ weiterentwickelt. Dabei werden biologische Gewebe mit speziellen Farbstoffen behandelt, die sie für die Fluoreszenz-Mikroskopie transparent machen.

„Doch bisher war es mit dieser Technik nur möglich, entweder nur die großen oder die kleinen Gefäße des Gehirns darzustellen“, sagt Mihail Ivilinov Todorov, Doktorand bei Ertürk.

Deshalb haben die Münchner Wissenschaftler erstmals zwei Farbstoffe kombiniert. „So haben wir einige schöne Bilder der Gehirngefäße inklusive der Kapillaren bekommen“, erklärt der Biologe weiter.

Künstliche Intelligenz analysiert Gefäßnetzwerk

Mithilfe Künstlicher Intelligenz haben Forscherinnen und Forscher aus der Arbeitsgruppe von Björn Menze, Professor für Bildbasierte biomedizinische Modellierung an der Technischen Universität München (TUM), auf Grundlage dieser Bilder das gesamte Gefäßnetzwerk des Gehirns bis in seine feinsten Verästelungen rekonstruiert.

Eine solche Rekonstruktion liefert nicht nur Bilder, sondern macht es insbesondere möglich, die Gefäßstrukturen quantitativ auszuwerten. „So können wir zum Beispiel für verschiedene Hirnareale statistisch erfassen, welche Durchmesser die Gefäße haben oder wie sie sich verzweigen“, sagt Johannes Paetzold, Doktorand in Menzes Arbeitsgruppe.

„Wir haben über die letzten Jahre einen Deep-Learning-Algorithmus entwickelt, der darauf spezialisiert ist, in medizinischen Bildern Gefäße zu erkennen“, erklärt Menze. „Diesen haben wir hier erstmals auf ein gesamtes Gehirn angewandt.“

Dabei konnte der Algorithmus zuverlässig zwischen Gefäßen und umliegendem Gewebe unterscheiden, obwohl in dem Fluoreszenz-Bild nicht alle Bereiche gut ausgeleuchtet waren und Lichtreflexe oder andere Fehler die Darstellung verfälschten.

Hirnkrankheiten verstehen und diagnostizieren

Mihail Ivilinov Todorov plant, die statistischen Daten für die Erforschung von Gefäßveränderungen bei Schlaganfällen zu nutzen. Björn Menze hingegen möchte die globalen Strukturen des Gefäßsystems untersuchen und zum Beispiel verstehen, welche Rolle anatomisch bedingte Unterschiede bei Hirnerkrankungen spielen.

Nutzen für den Patienten

Aber auch im klinischen Alltag könnte die Methode zum Einsatz kommen: „Die kleinen Gewebeproben aus menschlichen Tumoren lassen sich mit unserem System wahrscheinlich exakter untersuchen als bisher möglich“, erklärt Ertürk. Krebsgewebe ist durchzogen von Gefäßen – und die Analyse ihrer Struktur hilft dabei, das Stadium eines Tumors zu bestimmen.

„Vielleicht“, so Ertürk weiter, „kann sich das auf die Optimierung der Therapie auswirken.“ Der Biologe will die neue Methode auch anwenden, um eines Tages seine Vision wahrzumachen menschliche Organe im 3D-Drucker herstellen zu lassen. Eine der vielen Voraussetzungen dafür: die genaue Struktur der Gefäße in einem Organ zu kennen.

Wissenschaftliche Ansprechpartner:

Dr. Ali Ertürk
Institut für Schlaganfall- und Demenzforschung (ISD)
LMU Klinikum München
Campus Großhadern
E-Mail: ali.ertuerk@med.uni-muenchen.de
Web: https://www.isd-research.de/erturk-lab

Prof. Dr. Björn Menze
Technische Universität München (TUM)
Maschinelles Lernen in der Biomedizinischen Bildgebung
Munich School of BioEngineering und Zentralinstitut für
Translationale Krebsforschung (TranslaTUM)

Tel: +49 89 289 10930
E-Mail: bjoern.menze@tum.de

Originalpublikation:

https://www.nature.com/articles/s41592-020-0792-1

Weitere Informationen:

https://www.lmu-klinikum.de/aktuelles/pressemitteilungen/automatische-analyse-de...

Philipp Kressirer | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Coronavirus: Reproduktionszahl genauer geschätzt
02.06.2020 | Karlsruher Institut für Technologie

nachricht Teamwork entschlüsselt Immunschädigung im Auge
02.06.2020 | Uniklinik Köln

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnetische Kristallschichten für den Computer von Morgen

Ist die Elektronik, so wie wir sie kennen, am Ende?

Der Einsatz moderner elektronischer Schaltkreise für immer leistungsfähigere Rechentechnik und mobile Endgeräte stößt durch die zunehmende Miniaturisierung in...

Im Focus: K-State study reveals asymmetry in spin directions of galaxies

Research also suggests the early universe could have been spinning

An analysis of more than 200,000 spiral galaxies has revealed unexpected links between spin directions of galaxies, and the structure formed by these links...

Im Focus: Neue Messung verschärft altes Problem

Seit Jahrzehnten rätseln Astrophysiker über zwei markante Röntgen-Emissionslinien von hochgeladenem Eisen: ihr gemessenes Helligkeitsverhältnis stimmt nicht mit dem berechneten überein. Das beeinträchtigt die Bestimmung der Temperatur und Dichte von Plasmen. Neue sorgfältige, hoch-präzise Messungen und Berechnungen mit modernsten Methoden schließen nun alle bisher vorgeschlagenen Erklärungen für diese Diskrepanz aus und verschärfen damit das Problem.

Heiße astrophysikalische Plasmen erfüllen den intergalaktischen Raum und leuchten hell in Sternatmosphären, aktiven Galaxienkernen und Supernova-Überresten....

Im Focus: New measurement exacerbates old problem

Two prominent X-ray emission lines of highly charged iron have puzzled astrophysicists for decades: their measured and calculated brightness ratios always disagree. This hinders good determinations of plasma temperatures and densities. New, careful high-precision measurements, together with top-level calculations now exclude all hitherto proposed explanations for this discrepancy, and thus deepen the problem.

Hot astrophysical plasmas fill the intergalactic space, and brightly shine in stellar coronae, active galactic nuclei, and supernova remnants. They contain...

Im Focus: Neuartiges Covid-19-Schnelltestverfahren auf Basis innovativer DNA-Polymerasen entwickelt

Eine Forschungskooperation der Universität Konstanz unter Federführung von Professor Dr. Christof Hauck (Fachbereich Biologie) mit Beteiligung des Klinikum Konstanz, eines Konstanzer Diagnostiklabors und des Konstanzer Unternehmens myPOLS Biotec, einer Ausgründung aus der Arbeitsgruppe für Organische Chemie / Zelluläre Chemie der Universität Konstanz, hat ein neuartiges Covid-19-Schnelltestverfahren entwickelt. Dieser Test ermöglicht es, Ergebnisse in der Hälfte der Zeit zu ermitteln – im Vergleich zur klassischen Polymerase-Ketten-Reaktion (PCR).

Die frühe Identifikation von Patienten, die mit dem neuartigen Coronavirus (SARS-CoV-2) infiziert sind, ist zentrale Voraussetzung bei der globalen Bewältigung...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Gebäudewärme mit "grünem" Wasserstoff oder "grünem" Strom?

26.05.2020 | Veranstaltungen

Dresden Nexus Conference 2020 - Gleicher Termin, virtuelles Format, Anmeldung geöffnet

19.05.2020 | Veranstaltungen

Urban Transport Conference 2020 in digitaler Form

18.05.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Magnetische Kristallschichten für den Computer von Morgen

03.06.2020 | Informationstechnologie

Wundheilung detailliert aufgeschlüsselt

03.06.2020 | Biowissenschaften Chemie

Ein einzelnes Gen bestimmt das Geschlecht von Pappeln

03.06.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics