Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Antiblockiersystem in Arterien schützt vor Herzinfarkt

16.10.2018

Forschende der Universität Tübingen entdecken einen körpereigenen Mechanismus, der gefährliche Blutgerinnsel hemmt

Tübinger Biochemiker haben einen körpereigenen Mechanismus entdeckt, der die Entstehung gefährlicher Blutgerinnsel im Inneren von Blutgefäßen, sogenannter Thrombosen, verhindern kann. Bislang wurde dieses natürliche Antiblockiersystem für Arterien vor allem an Mäusen untersucht.


Je größer das Blutgerinnsel, desto weniger Platz hat das Blut zum Fließen. Die erhöhte Schubspannung löst einen Mechanismus aus, der das Blutgerinnsel auf natürliche Weise hemmt.

Susanne Feil

Erste Untersuchungen mit menschlichen Zellen haben die Ergebnisse bestätigt, so dass sie sehr wahrscheinlich auf Menschen übertragbar sind. Thrombosen zählen weltweit zu den häufigsten Todesursachen, weil sie Blutgefäße verstopfen und damit zu Herzinfarkt oder Schlaganfall führen können.

Der neuentdeckte Mechanismus könnte künftig die Therapiemöglichkeiten verbessern. Durchgeführt wurde die Studie von einem Team um Dr. Lai Wen und Professor Robert Feil vom Interfakultären Institut für Biochemie der Universität Tübingen in Zusammenarbeit mit dem Universitätsklinikum Tübingen sowie den Universitäten Lübeck und Würzburg. Sie wurde kürzlich in der Fachzeitschrift Nature Communications veröffentlicht.

Wunden schließt unser Körper, indem Blutplättchen die beschädigten Gefäßwände verkleben; das Blut gerinnt. Das geschieht äußerlich, wenn wir uns in den Finger schneiden, aber auch bei kleinen Verletzungen innerhalb von Adern. Letzteres wird zum Problem, wenn das Blutgerinnsel zu groß wird und das Blutgefäß verstopft.

„Wir haben in Blutplättchen von Mäusen und Menschen einen selbstregulierenden Mechanismus entdeckt, der das unkontrollierte Wachstum eines Blutgerinnsels verhindern kann“, erklärt Lai Wen, der Erstautor der Studie: Wenn ein Blutgerinnsel wachse, müsse das Blut das Hindernis umfließen.

Je größer das Gerinnsel, desto mehr Kraft übe das vorbeiströmende Blut darauf aus: die sogenannte Schubspannung steige. Das setze einen Mechanismus in Gang, der bewirke, dass in den verklebten Blutplättchen mehr cyclisches Guanosinmonophosphat (cGMP) gebildet werde.

„Dieser Botenstoff verhindert, dass weitere Blutplättchen haften bleiben und das lebensbedrohliche Gerinnsel löst sich langsam auf“, beschreibt Wen. Fließe das Blut wieder ungehindert, sinke die Schubspannung und der Mechanismus stoppe. Ein kleines Gerinnsel bleibe bestehen und verschließe weiterhin die Verletzung in der Gefäßwand. Das cGMP wirke somit als eine Art Antiblockiersystem für Blutgefäße, das sich je nach Bedarf über die Schubspannung selbst ein- oder ausschalte.

„Studien haben gezeigt, dass Menschen, die aufgrund eines genetischen Defekts weniger cGMP bilden, häufiger einen Herzinfarkt erleiden – der neuentdeckte Mechanismus wäre eine Erklärung dafür“, erläutert Feil. Die Entdeckung des cGMP Antiblockiersystems lasse uns aber nicht nur besser verstehen, wie Herzinfarkte entstehen; sie eröffne auch neue Möglichkeiten bei der Therapie von Thrombosen.

Es gebe bereits Medikamente, die den Körper bei der Bildung von cGMP unterstützen. „Sie wurden für andere Zwecke entwickelt, könnten aber möglicherweise auch zur Behandlung bei Thrombosegefahr eingesetzt werden“, sagt Feil. Dazu gehörten beispielsweise Präparate mit den Wirkstoffen Riociguat oder Sildenafil; letzteres wird oft in Potenzmitteln eingesetzt.

„Herkömmliche Medikamente gegen Thrombosen verursachen häufig Blutungen, weil sie die Blutgerinnung im gesamten Körper hemmen. Medikamente, die am cGMP-Mechanismus ansetzen, sollten dagegen weniger lebensgefährliche Nebenwirkungen haben“, erläutert Feil. Sie wirken nur bei erhöhter Schubspannung und die gebe es außerhalb von Blutgefäßen nicht. Um dies endgültig für den menschlichen Körper zu bestätigen, müssen jedoch noch klinische Studien folgen.

„Darüber hinaus könnte das Zusammenspiel von mechanischer Krafteinwirkung auf Zellen und der Bildung von cGMP auch bei vielen anderen Krankheiten eine Rolle spielen“, vermutet Feil. „Interessante Aspekte für künftige Forschungen sind beispielsweise die Auswirkungen des neuentdeckten Mechanismus auf Blutdruck, Osteoporose oder Krebs.“

Wissenschaftliche Ansprechpartner:

Prof. Dr. Robert Feil
Universität Tübingen
Interfakultäres Institut für Biochemie (IFIB)
Telefon +49-7071-29 73 350
robert.feil[atuni-tuebingen.de

Originalpublikation:

Lai Wen, Susanne Feil, Markus Wolters, Martin Thunemann, Frank Regler, Kjestine Schmidt, Andreas Friebe, Marcus Olbrich, Harald Langer, Meinrad Gawaz, Cor de Wit, Robert Feil: A shear-dependent NO-cGMP-cGKI cascade in platelets acts as an auto-regulatory brake of thrombosis. Nature Communications. DOI 10.1038/s41467-018-06638-8.

Antje Karbe | idw - Informationsdienst Wissenschaft

Weitere Berichte zu: Biochemie Blutgefäße Blutgerinnsel Blutplättchen Herzinfarkt Thrombosen Zellen

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Klare Sicht – Projekt zur sichereren Laserbehandlung von Floatern gestartet
26.05.2020 | Laser Zentrum Hannover e.V.

nachricht Evolutionäre Zielkonflikte können die Entwicklung von Antibiotikaresistenzen nicht verhindern
19.05.2020 | Universität zu Köln

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neuartiges Covid-19-Schnelltestverfahren auf Basis innovativer DNA-Polymerasen entwickelt

Eine Forschungskooperation der Universität Konstanz unter Federführung von Professor Dr. Christof Hauck (Fachbereich Biologie) mit Beteiligung des Klinikum Konstanz, eines Konstanzer Diagnostiklabors und des Konstanzer Unternehmens myPOLS Biotec, einer Ausgründung aus der Arbeitsgruppe für Organische Chemie / Zelluläre Chemie der Universität Konstanz, hat ein neuartiges Covid-19-Schnelltestverfahren entwickelt. Dieser Test ermöglicht es, Ergebnisse in der Hälfte der Zeit zu ermitteln – im Vergleich zur klassischen Polymerase-Ketten-Reaktion (PCR).

Die frühe Identifikation von Patienten, die mit dem neuartigen Coronavirus (SARS-CoV-2) infiziert sind, ist zentrale Voraussetzung bei der globalen Bewältigung...

Im Focus: Textilherstellung für Weltraumantennen startet in die Industrialisierungsphase

Im Rahmen des EU-Projekts LEA (Large European Antenna) hat das Fraunhofer-Anwendungszentrum für Textile Faserkeramiken TFK in Münchberg gemeinsam mit den Unternehmen HPS GmbH und Iprotex GmbH & Co. KG ein reflektierendes Metallnetz für Weltraumantennen entwickelt, das ab August 2020 in die Produktion gehen wird.

Beim Stichwort Raumfahrt werden zunächst Assoziationen zu Forschungen auf Mond und Mars sowie zur Beobachtung ferner Galaxien geweckt. Für unseren Alltag sind...

Im Focus: Biotechnologie: Enzym setzt durch Licht neuartige Reaktion in Gang

In lebenden Zellen treiben Enzyme biochemische Stoffwechselprozesse an. Auch in der Biotechnologie sind sie als Katalysatoren gefragt, um zum Beispiel chemische Produkte wie Arzneimittel herzustellen. Forscher haben nun ein Enzym identifiziert, das durch die Beleuchtung mit blauem Licht katalytisch aktiv wird und eine Reaktion in Gang setzt, die in der Enzymatik bisher unbekannt war. Die Studie ist in „Nature Communications“ erschienen.

Enzyme – in jeder lebenden Zelle sind sie die zentralen Antreiber für biochemische Stoffwechselprozesse und machen dort Reaktionen möglich. Genau diese...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: Innovative Sensornetze aus Satelliten

In Würzburg werden vier Kleinst-Satelliten auf ihren Start vorbereitet. Sie sollen sich in einer Formation bewegen und weltweit erstmals ihre dreidimensionale Anordnung im Orbit selbstständig kontrollieren.

Wenn ein Gegenstand wie der Planet Erde komplett ohne tote Winkel erfasst werden soll, muss man ihn aus verschiedenen Richtungen ansehen und die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Gebäudewärme mit "grünem" Wasserstoff oder "grünem" Strom?

26.05.2020 | Veranstaltungen

Dresden Nexus Conference 2020 - Gleicher Termin, virtuelles Format, Anmeldung geöffnet

19.05.2020 | Veranstaltungen

Urban Transport Conference 2020 in digitaler Form

18.05.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Wie sich Nervenzellen zum Abruf einer Erinnerung gezielt reaktivieren lassen

29.05.2020 | Biowissenschaften Chemie

Wald im Wandel

29.05.2020 | Agrar- Forstwissenschaften

Schwarzer Stickstoff: Bayreuther Forscher entdecken neues Hochdruck-Material und lösen ein Rätsel des Periodensystems

29.05.2020 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics