Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ansatzpunkt für neue Epilepsie-Medikamente

30.05.2018

Eine Studie der Universität Bonn zeigt, warum eines der weltweit am häufigsten eingesetzten Epilepsie-Medikamente vielen Betroffenen nicht hilft. Die Ergebnisse weisen möglicherweise auch den Weg zu neuen, wirksameren Arzneimitteln. Diese sind dringend nötig: Jeder dritte Epilepsie-Patient spricht auf keines der heutigen Medikamente an. Die Arbeit erscheint im „Journal of Neuroscience“, ist aber bereits online abrufbar.

Die Nervenzellen im Gehirn – die Neuronen – kommunizieren elektrisch: Sie können Spannungspulse „abfeuern“ und damit zum Beispiel ihre Nachbarn anregen. Bei einem epileptischen Anfall gerät dieser Vorgang aus dem Ruder: Ganze Zellverbände feuern plötzlich synchron und in rascher Abfolge. Die Patienten verlieren ihr Bewusstsein; ihre Muskeln verkrampfen sich.


Niklas Beckonert (links) und Prof. Dr. Heinz Beck im Labor für Experimentelle Epileptologie und Kognitionsforschung der Universität Bonn.

© Foto: Katharina Wislsperger/UKB

Das weit verbreitete Epilepsie-Medikament Carbamazepin unterbricht diesen elektrischen Gewittersturm. Allerdings wirkt es längst nicht bei allen Betroffenen – warum, war bislang völlig unklar. „Unsere Studie liefert auf diese Frage erstmals eine schlüssige Antwort“, erklärt Niklas Beckonert, der bei Prof. Dr. Heinz Beck am Institut für experimentelle Epileptologie und Kognitionsforschung der Universität Bonn promoviert.

Damit eine Nervenzelle einen elektrischen Impuls erzeugen kann, muss sie positiv geladene Teilchen aus ihrer Umgebung aufnehmen, so genannte Natrium-Ionen. Sie verfügt dazu über spezifische Kanäle, die sie öffnen und wieder schließen kann. Normalerweise lässt sich ein solcher Kanal weit über 100 Mal in der Sekunde auf- und wieder zusperren.

Bremse im Gehirn

Carbamazepin (abgekürzt CBZ) heftet sich in die geöffneten Natrium-Kanäle und blockiert sie für eine gewisse Zeit. Dadurch können die Nervenzellen längst nicht mehr so häufig feuern. „CBZ bremst ihre elektrische Aktivität und verhindert so, dass ein epileptischer Anfall entsteht“, erläutert Beckonert.

Doch damit die Bremse korrekt funktioniert, benötigt der Wirkstoff augenscheinlich noch eine körpereigene Zutat, das so genannte Spermin. „Wenn in der Zelle zu wenig Spermin vorhanden ist, kann CBZ die Überaktivität der Neuronen nicht mehr wirksam eindämmen“, sagt Beckonert. „Warum, wissen wir noch nicht genau.“

Bei Patienten mit chronischer Epilepsie ist oft der Stoffwechsel der Nervenzellen gestört: Sie produzieren große Mengen eines Enzyms namens SSAT. Es verändert das Spermin chemisch und inaktiviert es so. Dementsprechend ist bei den Betroffenen der Spiegel an aktivem Spermin deutlich niedriger als normal.

Gemeinsam stark

Bei Hirnzellen aus chronisch epilepsiekranken Ratten ist das ähnlich. Das erklärt vermutlich auch, warum CBZ bei ihnen keine Wirkung zeigt. Als die Bonner Wissenschaftler derartigen Zellen zusätzliches Spermin zuführten, sprachen diese dagegen wieder auf CBZ an. Wie die beiden Substanzen Hand in Hand arbeiten, wissen die Forscher noch nicht genau. Es ist aber bekannt, dass auch Spermin an offene Natrium-Kanäle bindet. „Wir vermuten, dass sich durch diese Bindung die Gestalt der Kanäle so ändert, dass CBZ leichter angreifen kann“, sagt Beckonert.

Die Studie weist möglicherweise den Weg zu neuen Wirkstoffen. Wenn man etwa das SSAT in seiner Funktion behindern könnte, würde der intrazelluläre Spiegel an aktivem Spermin steigen. CBZ könnte dann auch chronisch Erkrankten helfen. Die Ergebnisse erlauben auch die Entwicklung von Testverfahren, mit denen sich neue potenzielle Wirkstoffe sehr schnell auf ihre Wirksamkeit bei chronischen Epilepsien testen lassen.

Der Bedarf an neuen Medikamenten ist groß: Allein in Deutschland leiden rund 200.000 Menschen unter epileptischen Anfällen, gegen die heutige Pharmaka nichts ausrichten können. Weltweit spricht jeder Dritte der mehr als 50 Millionen Erkrankten nicht auf Medikamente an. Niklas Beckonert wird durch das BONFOR-Stipendium der Medizinischen Fakultät der Universität Bonn für experimentelle Doktorarbeiten gefördert.

Publikation: Niklas Michael Beckonert, Thoralf Opitz, Julika Pitsch, Patrício Soares da Silva und Heinz Beck: Polyamine modulation of anticonvulsant drug response: A potential mechanism contributing to pharmacoresistance in chronic epilepsy; Journal of Neuroscience; DOI: 10.1523/JNEUROSCI.0640-18.2018

Kontakt:

Niklas Beckonert
Institut für experimentelle Epileptologie und Kognitionsforschung
der Universität Bonn
Tel. 0228/6885-146
E-Mail: n.beckonert@gmail.com

Prof. Dr. Heinz Beck
Institut für experimentelle Epileptologie und Kognitionsforschung
der Universität Bonn
Tel. 0228/6885-215
E-Mail: Heinz.Beck@ukbonn.de

Johannes Seiler | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-bonn.de/

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Studie mit bispezifischem Antikörper liefert beeindruckende Behandlungserfolge bei Multiplem Myelom
01.04.2020 | Universitätsklinikum Würzburg

nachricht Pool-Testen von SARS-CoV-2 Proben erhöht die Testkapazität weltweit um ein Vielfaches
31.03.2020 | Goethe-Universität Frankfurt am Main

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wenn Ionen an ihrem Käfig rütteln

In vielen Bereichen spielen „Elektrolyte“ eine wichtige Rolle: Sie sind bei der Speicherung von Energie in unserem Körper wie auch in Batterien von großer Bedeutung. Um Energie freizusetzen, müssen sich Ionen – geladene Atome – in einer Flüssigkeit, wie bspw. Wasser, bewegen. Bisher war jedoch der präzise Mechanismus, wie genau sie sich durch die Atome und Moleküle der Elektrolyt-Flüssigkeit bewegen, weitgehend unverstanden. Wissenschaftler*innen des Max-Planck-Instituts für Polymerforschung haben nun gezeigt, dass der durch die Bewegung von Ionen bestimmte elektrische Widerstand einer Elektrolyt-Flüssigkeit sich auf mikroskopische Schwingungen dieser gelösten Ionen zurückführen lässt.

Kochsalz wird in der Chemie auch als Natriumchlorid bezeichnet. Löst man Kochsalz in Wasser lösen sich Natrium und Chlorid als positiv bzw. negativ geladene...

Im Focus: When ions rattle their cage

Electrolytes play a key role in many areas: They are crucial for the storage of energy in our body as well as in batteries. In order to release energy, ions - charged atoms - must move in a liquid such as water. Until now the precise mechanism by which they move through the atoms and molecules of the electrolyte has, however, remained largely unknown. Scientists at the Max Planck Institute for Polymer Research have now shown that the electrical resistance of an electrolyte, which is determined by the motion of ions, can be traced back to microscopic vibrations of these dissolved ions.

In chemistry, common table salt is also known as sodium chloride. If this salt is dissolved in water, sodium and chloride atoms dissolve as positively or...

Im Focus: Den Regen für Hydrovoltaik nutzen

Wassertropfen, die auf Oberflächen fallen oder über sie gleiten, können Spuren elektrischer Ladung hinterlassen, so dass sich die Tropfen selbst aufladen. Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben dieses Phänomen, das uns auch in unserem Alltag begleitet, nun detailliert untersucht. Sie entwickelten eine Methode zur Quantifizierung der Ladungserzeugung und entwickelten zusätzlich ein theoretisches Modell zum besseren Verständnis. Nach Ansicht der Wissenschaftler könnte der beobachtete Effekt eine Möglichkeit zur Energieerzeugung und ein wichtiger Baustein zum Verständnis der Reibungselektrizität sein.

Wassertropfen, die über nicht leitende Oberflächen gleiten, sind überall in unserem Leben zu finden: Vom Tropfen einer Kaffeemaschine über eine Dusche bis hin...

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: Quantenimaging: Unsichtbares sichtbar machen

Verschränkte Lichtteilchen lassen sich nutzen, um Bildgebungs- und Messverfahren zu verbessern. Ein Forscherteam am Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF in Jena hat eine Quantenimaging-Lösung entwickelt, die in extremen Spektralbereichen und mit weniger Licht genaueste Einblicke in Gewebeproben ermöglichen kann.

Optische Analyseverfahren wie Mikroskopie und Spektroskopie sind in sichtbaren Wellenlängenbereichen schon äußerst effizient. Doch im Infrarot- oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium AWK’21 findet am 10. und 11. Juni 2021 statt

06.04.2020 | Veranstaltungen

Interdisziplinärer Austausch zum Design elektrochemischer Reaktoren

03.04.2020 | Veranstaltungen

13. »AKL – International Laser Technology Congress«: 4.–6. Mai 2022 in Aachen – Lasertechnik Live bereits früher!

02.04.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Aachener Werkzeugmaschinen-Kolloquium AWK’21 findet am 10. und 11. Juni 2021 statt

06.04.2020 | Veranstaltungsnachrichten

Wenn Ionen an ihrem Käfig rütteln

06.04.2020 | Energie und Elektrotechnik

Virtueller Roboterschwarm auf dem Mars

06.04.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics