Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

1100 Jahre in 100 Sekunden: Berliner Forscher erzielen Durchbruch für neues Diagnose-Verfahren

16.07.2012
Den Patienten durchleuchten und dabei gezielt krankheitsrelevante Moleküle und Zellen aufspüren – an dieser Vision arbeitet eine Gruppe von Wissenschaftlern am Leibniz Institut für Molekulare Pharmakologie (FMP).

Nun ist ihnen ein entscheidender Durchbruch gelungen. Durch optimierte Aufnahmetechniken können sie Biomarker innerhalb von 100 Sekunden mit einer Genauigkeit abbilden, für die ein Patient bei bisherigen Techniken 1100 Jahre stillhalten müsste. Mit Hilfe solcher „Xenon-Biosensoren“ könnten Ärzte einmal ganz neue Einblicke in den menschlichen Körper gewinnen.

Der Blick ins Innere des Körpers hat die Medizin revolutioniert – viele Erkrankungen oder innere Verletzungen erkennen Ärzte heute dank moderner bildgebender Diagnostik, indem sie den menschlichen Körper mit Radiowellen oder radioaktiven Isotopen durchleuchten. Doch dieser Blick ist noch immer beschränkt: Im Kernspintomographen (MRT) kann man zwar hervorragend unterschiedliche Gewebearten sichtbar machen, aber wenig Feinheiten wie Zelltypen oder Stoffwechselprodukte in geringer Konzentration erkennen. Das gelingt besser mit der Positronenemissions-Tomographie (PET) mit Hilfe von radioaktiven Isotopen, doch hier ist die räumliche Auflösung geringer und die Diagnose ist mit Strahlenbelastung verbunden.

Die Vorteile beider Methoden könnte einmal ein ganz neues Verfahren vereinen, an deren Grundlagen derzeit am Leibniz-Institut für Molekulare Pharmakologie (FMP) gearbeitet wird. Hier entwickelt der Physiker Leif Schröder mit seiner Arbeitsgruppe ein trickreiches Prozedere, das Ärzten einmal detailliertere Bilder als bislang bieten soll. Wie beim MRT nützt auch Leif Schröder den Kernspin von Atomkernen, die sich in sehr hohen Magnetfeldern entsprechend dem Magnetfeld ausrichten. Je nach chemischer Umgebung treten sie dann mit Radiowellen in Wechselwirkung, ein Computer kann aus den zurückgesandten Signalen ein Bild errechnen. Anders als beim herkömmlichen Verfahren messen die Forscher am FMP aber nicht die Resonanz von Wasserstoff-Atomen, die im menschlichen Körper zwar allgegenwärtig sind, aber nur schwache Signale aussenden. Stattdessen reichern sie die Proben mit „hyperpolarisiertem“ Xenon an, dessen Atomkerne in Summe weit stärkere Signale aussenden.

Die Vision geht dahin, dass Patienten einmal das ungiftige Edelgas einatmen werden, so dass es sich zunächst in der Lunge und über das Blut im Körper verteilt. Zugleich bekäme der Patient maßgeschneiderte Biosensoren injiziert, die sich je nach Fragestellung zum Beispiel an bestimmte Tumorzellen oder auch an Arteriosklerose-Plaques anheften könnten. Die Biosensoren fangen zugleich mittels einer besonderen Käfigstruktur die Xenonatome ein, und die gesuchten Moleküle oder Zellen werden so im Magnetfeld sichtbar.

Die Idee zu dieser Methode entstand bereits an der Universität von Berkeley, wo Schröder vor seiner Zeit am FMP arbeitete. Am Berliner Institut mit seiner großen technischen Ausstattung hat der Physiker eine Gruppe von Wissenschaftlern aus unterschiedlichen Disziplinen um sich geschart, mit deren Hilfe ihm nun ein entscheidender Durchbruch gelungen ist. „Wir mussten beweisen, dass die Methode wirklich hochauflösende Bilder liefern kann, die im Prinzip mit den bisherigen medizinischen Diagnoseverfahren konkurrieren könnte“, erklärt Schröder. Dafür musste er zunächst das Verfahren optimieren, mit dem man das benötigte hyperpolarisierte Xenon erzeugt. Das geschieht durch starke Laserstrahlen, durch welche sich die Atomkerne für eine gewisse Zeit magnetisch ausrichten,. „Wir benützen nun eine neue Laseraparatur, die erst seit vier Jahren auf dem Markt ist – normalerweise wird sie eher in der Industrie eingesetzt, man kann mit solchen Lasern zum Beispiel dicke Stahlplatten präzise zerschneiden“, erklärt Schröder. Zugleich ist es seinen beiden Doktoranden Martin Kunth und Jörg Döpfert gelungen, die Verarbeitung der Signale und damit die Auflösung der Bilder entscheidend zu verbessern.

Die Idee der neuartigen Xenon-Biosensoren hat von Beginn an für erhebliches Aufsehen in der Fachwelt gesorgt, doch da die Technik noch in den Kinderschuhen steckt, arbeiten weltweit nur einige wenige Gruppen daran. Erst kürzlich spekulierte eine französische Gruppe im Journal „Angewandte Chemie“ darüber, ob der von Leif Schröder eingeschlagene Weg die nötige räumliche Auflösung in ausreichend geringer Aufnahmezeit möglich machen könnte. „Das war für uns eine Steilvorlage“, sagt Schröder. „Zu dem Zeitpunkt verfügten wir eigentlich schon über die nötigen Nachweise,“ergänzt Kunth. „Während zuvor eine Messung noch über zwanzig Minuten dauerte, sind jetzt nur noch hundert Sekunden nötig. Und wir setzen die Biosensoren jetzt in Konzentrationen ein, wie sie für die Praxis realistisch sind.“ Selbst zeitaufgelöste „Filme“ sind laut Kunth nun machbar. „Bei konventioneller Detektion bräuchte man für eine einzelne Aufnahme 1100 Jahre“, erläutert Döpfert.

Sie reichten ihre Daten ebenfalls bei „Angewandte Chemie“ ein, und das renommierte Journal stufte die Arbeit sogleich als „Hot Topic“ ein. Der besondere Trick der Gruppe um Schröder besteht darin, dass das Signal der Xenon-Atome durch die Biosensoren „gelöscht“ wird. Da sie jeweils nur für wenige Millisekunden in den Molekülkäfig hinein diffundieren, werden während einer Aufnahme Tausende Atome quasi ausgeknipst, wodurch ein dunkler Fleck im Bild entsteht.

„Wir sind nun an dem Punkt angelangt, wo wir beginnen können, lebende Proben zu untersuchen“, sagt Schröder. Außerdem könnte man mit der Methode auch unterschiedliche Biosensoren zugleich einsetzen und sie bei verschiedenen Radiofrequenzen sichtbar machen. Damit könnte zum Beispiel die unterschiedlichen Zellentypen sichtbar machen, aus denen sich ein Tumor zusammensetzt. Der Blick ins Körperinnere – er könnte einmal sehr fein gezeichnet und zudem auch noch bunt werden.

Kontakt
Dr. Leif Schröder
Leibniz-Institut für Molekulare Pharmakologie (FMP)
E-Mail: lschroeder@fmp-berlin.de
Tel: 030 94793 - 121

Dr. Birgit Herden | idw
Weitere Informationen:
http://www.fmp-berlin.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Rasante Entstehung von Antibiotikaresistenzen im Behandlungsalltag
21.11.2019 | Christian-Albrechts-Universität zu Kiel

nachricht Entzündungsprozesse treiben Alzheimer und andere Hirnerkrankungen voran
21.11.2019 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neuartiges Antibiotikum gegen Problemkeime in Sicht

Internationales Forscherteam mit Beteiligung der Universität Gießen entdeckt neuen Wirkstoff gegen gramnegative Bakterien – Darobactin attackiert die Erreger an einem bislang unbekannten Wirkort

Immer mehr bakterielle Erreger von Infektionskrankheiten entwickeln Resistenzen gegen die marktüblichen Antibiotika. Typische Krankenhauskeime wie Escherichia...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Kleine Teilchen, große Wirkung: Wie Nanoteilchen aus Graphen die Auflösung von Mikroskopen verbessern

Konventionelle Lichtmikroskope können Strukturen nicht mehr abbilden, wenn diese einen Abstand haben, der kleiner als etwa die Lichtwellenlänge ist. Mit „Super-resolution Microscopy“, entwickelt seit den 80er Jahren, kann man diese Einschränkung jedoch umgehen, indem fluoreszierende Materialien eingesetzt werden. Wissenschaftlerinnen und Wissenschaftler am Max-Planck-Institut für Polymerforschung haben nun entdeckt, dass aus Graphen bestehende Nano-Moleküle genutzt werden können, um diese Mikroskopie-Technik zu verbessern. Diese Nano-Moleküle bieten eine Reihe essentieller Vorteile gegenüber den bisher verwendeten Materialien, die die Mikroskopie-Technik noch vielfältiger einsetzbar machen.

Mikroskopie ist eine wichtige Untersuchungsmethode in der Physik, Biologie, Medizin und vielen anderen Wissenschaften. Sie hat jedoch einen Nachteil: Ihre...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Mit künstlicher Intelligenz zum besseren Holzprodukt

Der Empa-Wissenschaftler Mark Schubert und sein Team nutzen die vielfältigen Möglichkeiten des maschinellen Lernens für holztechnische Anwendungen. Zusammen mit Swiss Wood Solutions entwickelt Schubert eine digitale Holzauswahl- und Verarbeitungsstrategie unter Verwendung künstlicher Intelligenz.

Holz ist ein Naturprodukt und ein Leichtbauwerkstoff mit exzellenten physikalischen Eigenschaften und daher ein ausgezeichnetes Konstruktionsmaterial – etwa...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage 2020: „Mach es einfach!“

18.11.2019 | Veranstaltungen

Humanoide Roboter in Aktion erleben

18.11.2019 | Veranstaltungen

1. Internationale Konferenz zu Agrophotovoltaik im August 2020

15.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Sichere Datenübertragung mit Ultraschall am Handy: neue Methode zur Nahfeldkommunikation

21.11.2019 | Kommunikation Medien

Rasante Entstehung von Antibiotikaresistenzen im Behandlungsalltag

21.11.2019 | Medizin Gesundheit

Gesundheits-App als Fitness-Coach für Familien

21.11.2019 | Kommunikation Medien

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics