Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit der Zwillingspolymerisation zu neuen Materialien

24.06.2011
Chemiker und Physiker der TU Chemnitz erhalten für die Erforschung von Hybridmaterialien mehr als eine Million Euro von der Deutschen Forschungsgemeinschaft

Aus Eins mach Zwei - das ist das grundlegende Prinzip der an der Professur Polymerchemie der Technischen Universität Chemnitz entwickelten Zwillingspolymerisation. Eine speziell konstruierte Verbindung, das Zwillingsmonomer, reagiert dabei in nur einem Arbeitsschritt zu zwei unterschiedlichen Homopolymeren.

Ein Monomer ist ein reaktionsfähiges Molekül - mehrere Monomere können durch eine chemische Verbindung zu einem Polymer werden. Handelt es sich um gleichartige Monomere, die sich verbinden, so entstehen Homopolymere. Die Chemnitzer Zwillingsmonomere bestehen wiederum aus zwei verschiedenen Bausteinen, die über eine Atombindung verknüpft sind.

Basiert die Zwillingspolymerisation auch auf einem einfachen Grundprinzip, so handelt es sich bei genauerer Betrachtung um einen komplexen Prozess. Um ihn besser verstehen und steuern zu können, forschen Wissenschaftler von mehreren Professuren der Chemnitzer Fakultät für Naturwissenschaft nun an dem Thema "Zwillingspolymerisation von organisch-anorganischen Hybridmonomeren zu Nanokompositen". Die Forschergruppe, an der Chemiker und Physiker beteiligt sind, wird von der Deutschen Forschungsgemeinschaft (DFG) seit dem 1. Mai 2011 für drei Jahre mit mehr als einer Million Euro gefördert.

Ihr Ziel ist die Erzeugung von neuen Hybridmaterialien. Diese bestehen aus einem organischen und einem anorganischen Teil - verbinden also kohlenstoffhaltige und kohlenstofffreie Stoffe. "Die entstehenden funktionalen Hybridmaterialien können in Zukunft beispielsweise in der Katalyse oder für die Speicherung von Gasen eingesetzt werden", sagt Prof. Dr. Stefan Spange, Inhaber der Professur Polymerchemie an der TU Chemnitz und Sprecher der Forschergruppe. Bei der Katalyse werden chemische Reaktionen beschleunigt oder gesteuert. "Konkret geht es in unserer Forschergruppe um ein neues Synthesekonzept, das solche Materialien in großer Menge und mit genau definierten molekularen, strukturellen und morphologischen Eigenschaften verfügbar machen soll", so Spange weiter. Dabei wollen die Wissenschaftler sowohl die etablierten Verfahren verbessern als auch neue entwickeln.

Dabei führen die Chemnitzer Chemiker und Physiker Synthese, Analyse und Theorie zusammen: "Die bisher studierten Zwillingspolymerisationen führen zu interessanten Produkten. Jedoch zeigen sie, je nach Zusammensetzung und Reaktionsdurchführung, komplexe und bislang wenig verstandene Reaktionsabläufe. Unser Forschungsschwerpunkt ist es deshalb, den Mechanismus der gekoppelten Bildungsprozesse, die zu den beiden makromolekularen Strukturen führen, zu analysieren und eine Theorie für diesen neuen Polymerisationstyp zu entwickeln", so der Sprecher der Forschergruppe. Die Wissenschaftler werden dafür neue komplexe Monomere herstellen und diese dann gezielt miteinander zur Reaktion bringen.

Das übergeordnete Ziel des Forschungsvorhabens ist es, eine neue Konzeption in den Materialwissenschaften zu entwickeln. "Voraussetzung dafür ist, die grundlegenden Zusammenhänge zu verstehen. Das fängt bei der Reaktivität und elektronischen Struktur der Monomerbausteine an und geht über die Reaktionsverläufe im Polymerisationsprozess bis hin zu den Materialzusammensetzungen und -eigenschaften", so Spange. Beteiligt sind neben der Professur Polymerchemie auch die Professuren Analytik an Festkörperoberflächen (Prof. Dr. Michael Hietschold), Anorganische Chemie (Prof. Dr. Heinrich Lang), Computerphysik (Prof. Dr. Karl Heinz Hoffmann), Halbleiterphysik (Prof. Dr. Dietrich R.T. Zahn) und Koordinationschemie (Prof. Dr. Michael Mehring) sowie Honorarprofessor Dr. Alexander Auer. "Durch die Synergie der Expertisen soll ein neues Forschungsfeld aus der Taufe gehoben werden, in dem Chemnitz im Moment Alleinstellung aufweist und als Keimzelle dienen kann", sagt Spange.

Die Forschergruppe im Internet: http://www.zwipo.tu-chemnitz.de

Weitere Informationen erteilt Prof. Dr. Stefan Spange, Telefon 0371 531-31714, E-Mail stefan.spange@chemie.tu-chemnitz.de.

Katharina Thehos | idw
Weitere Informationen:
http://www.zwipo.tu-chemnitz.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Innovative Materialien und Bauelemente für die Terahertz-Elektronik
02.04.2020 | Forschungsverbund Berlin e.V.

nachricht Wie man Schmutz einfach entfernt
02.04.2020 | Max-Planck-Institut für Polymerforschung

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenimaging: Unsichtbares sichtbar machen

Verschränkte Lichtteilchen lassen sich nutzen, um Bildgebungs- und Messverfahren zu verbessern. Ein Forscherteam am Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF in Jena hat eine Quantenimaging-Lösung entwickelt, die in extremen Spektralbereichen und mit weniger Licht genaueste Einblicke in Gewebeproben ermöglichen kann.

Optische Analyseverfahren wie Mikroskopie und Spektroskopie sind in sichtbaren Wellenlängenbereichen schon äußerst effizient. Doch im Infrarot- oder...

Im Focus: Sensationsfund: Spuren eines Regenwaldes in der Westantarktis

90 Millionen Jahre alter Waldboden belegt unerwartet warmes Südpol-Klima in der Kreidezeit

Ein internationales Forscherteam unter Leitung von Geowissenschaftlern des Alfred-Wegener-Institutes, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI)...

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

Im Focus: Blockierung des Eisentransports könnte Tuberkulose stoppen

Tuberkulose-Bakterien brauchen Eisen zum Überleben. Wird der Eisentransport in den Bakterien gestoppt, so kann sich der Tuberkulose-Erreger nicht weiter vermehren. Nun haben Forscher der Universität Zürich die Struktur des Transportproteins ermittelt, das für die Eisenzufuhr zuständig ist. Dies eröffnet Möglichkeiten zur Entwicklung neuer Medikamente.

Einer der verheerendsten Erreger, der sich im Inneren menschlicher Zellen vermehren kann, ist Mycobacterium tuberculosis – der Bazillus, der Tuberkulose...

Im Focus: Blocking the Iron Transport Could Stop Tuberculosis

The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply. When the iron transport into the bacteria is inhibited, the pathogen can no longer grow. This opens novel ways to develop targeted tuberculosis drugs.

One of the most devastating pathogens that lives inside human cells is Mycobacterium tuberculosis, the bacillus that causes tuberculosis. According to the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

13. »AKL – International Laser Technology Congress«: 4.–6. Mai 2022 in Aachen – Lasertechnik Live bereits früher!

02.04.2020 | Veranstaltungen

Europäischer Rheumatologenkongress EULAR 2020 wird zum Online-Kongress

30.03.2020 | Veranstaltungen

“4th Hybrid Materials and Structures 2020” findet web-basiert statt

26.03.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Quantenimaging: Unsichtbares sichtbar machen

02.04.2020 | Physik Astronomie

Innovative Materialien und Bauelemente für die Terahertz-Elektronik

02.04.2020 | Materialwissenschaften

Besser gewappnet bei Überflutungen in der Stadt

02.04.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics