Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zielsichere Roboter im Mikromaßstab

30.09.2016

Dank einer halbseitigen Beschichtung mit Kohlenstoff lassen sich Mikroschwimmer durch Licht antreiben und steuern

Manche Bakterien zieht es zum Licht, andere in die Dunkelheit. Den einen ermöglicht dieses phototaktische Verhalten, die Sonnenenergie möglichst effizient für Ihren Stoffwechsel auszunutzen, die anderen schützen sich so vor zu hohen Lichtintensitäten.


Zur dunklen Seite: Halbseitig mit Kohlenstoff beschichtete Janusteilchen, benannt nach dem doppelgesichtigen römischen Gott, navigieren von selbst von einer Lichtquelle weg. Mit diesen Mikroschwimmern ermöglichen Stuttgarter Physiker fototaktisches Verhalten, welches von vielen Mikroorganismen bekannt ist, auch in synthetisch hergestellten Systemen.

© Celia Lozano (MPI für Intelligente Systeme/Universität Stuttgart)

Forscher um Clemens Bechinger vom Max-Planck-Institut für Intelligente Systeme und der Universität Stuttgart haben mit Kollegen von der Universität Düsseldorf nun einen verblüffend einfachen Weg gefunden, Mikroschwimmer zum Licht oder in die Dunkelheit zu dirigieren. Sie leisten damit auch einen Beitrag, damit winzige Roboter im menschlichen Körper künftig einmal gezielt Krankheitsherde behandeln können.

Ein Ziel anzusteuern, statt aufs Geratewohl in beliebiger Richtung zu schwimmen ist für viele Mikroorganismen lebenswichtig. „Die Evolution hat einen enormen Aufwand betrieben, um ihnen Orientierungsfähigkeit zu geben“, sagt Clemens Bechinger.

Auch Spermien sind dafür ein gutes Beispiel. Mit ihren Geißeln verfügen die schwimmenden Keimzellen über einen effizienten Antrieb. Ohne Orientierung hin zur Eizelle würde ihnen dieser aber wenig nützen. Ihre Chance, die Eizelle zu befruchten wäre sehr gering. Von der Eizelle abgegebene chemische Lockstoffe weisen ihnen den Weg. Sie folgen der zunehmenden Konzentration dieser Stoffe.

Bakterien werden auch von Geißeln angetrieben und haben sogar eine ganze Palette von Steuerungen entwickelt: Manche orientieren sich an der zu- oder abnehmenden Konzentration von Nährstoffen, andere an der Schwerkraft, am Erdmagnetfeld oder eben an Lichtquellen.
Das Team von Clemens Bechinger gibt synthetisch hergestellten Partikeln ebenfalls beides: einen Antrieb und ein Sensorium für die Richtung, zum Beispiel entlang eines Magnetfeldes oder zum Licht. So entstehen winzige Roboter, die sich in einer Flüssigkeit durch einfache äußere Signale lenken lassen.

Die schwarze Hälfte des Janusteilchens erwärmt sich stärker

Die Natur dabei direkt zu kopieren, verbietet sich allerdings. Denn die Wahrnehmungsapparate und auch die Antriebe, die Lebewesen benutzen, um sich in die bevorzugte Richtung zu bewegen, sind viel zu komplex. „Wir entwickeln dagegen, Mikroschwimmer, die mit minimalem Aufwand zur Phototaxis fähig sind“, erklärt Bechinger.

Dieses Ziel hat das Team um den Max-Planck-Fellow nun erreicht. Seine Mikroschwimmer sind verblüffend einfach aufgebaut. Es sind durchsichtige Glaskügelchen mit einigen Tausendstel Millimeter Durchmesser, deren Antrieb ihnen auch als Kompass dient. Mit beiden Funktionen statten die Forscher die Mikroschwimmer nämlich aus, indem sie deren eine Hälfte mit einer schwarzen Kohlenstoffschicht überziehen, sodass die Teilchen an Halbmonde erinnern.

In einer Mischung aus Wasser und einer löslichen organischen Substanz bewegt sich solch ein einfach aufgebautes Janusteilchen, wenn es gleichmäßig beleuchtet wird. Denn das Licht erwärmt die schwarz gefärbte Hälfte eines Janusteilchens stärker als die andere. Die Wärme entmischt das Wasser und die organische Substanz. So ergibt sich ein Unterschied in der Konzentration des gelösten Stoffes zwischen den beiden Seiten des Kügelchens. Das Konzentrationsgefälle wird ausgeglichen, indem Flüssigkeit entlang der Kugeloberfläche von der transparenten Hälfte zur schwarzen Seite strömt. Ähnlich wie ein Ruderboot, das sich entgegen der Ruderschläge bewegt, schwimmt das Teilchen daher mit der transparenten Seite voraus durch die Flüssigkeit.

Ein Hell-Dunkel-Übergang bewirkt eine gerichtete Bewegung

Allerdings bewegt sich der Mikroschwimmer in beliebiger Richtung, verfügt also über einen Antrieb, aber nicht über einen Orientierungssinn. Die Forscher beendeten die Ziellosigkeit des Janusteilchen jedoch, indem sie es entlang eines Lichtgradienten, also senkrecht zu einem allmählichen Hell-Dunkel-Übergang, schwimmen ließen. Das Mikroteilchen bewegte sich dann tatsächlich zielgerichtet zum schwächer beleuchteten Teil der Flüssigkeit.

Die Wissenschaftler haben diesem vergleichsweise einfachen System also die Fähigkeit zur Fototaxis verliehen. Dies erklären sie damit, dass sich die Seite des Kügelchens, die sich im heller beleuchteten Teil befindet stärker erwärmt als die Seite im dunkleren Teil. Daher ist der Flüssigkeitsstrom, der die Konzentrationsdifferenz zwischen den beiden Hälften des Janusteilchens ausgleicht, auf der Seite, die mehr Licht abbekommt, schneller aus als auf der Teilchenseite im dunkleren Teil des Hell-Dunkel-Übergangs. Diese Situation entspricht einem Ruderboot, bei dem sich die Ruder auf beiden Seiten nicht gleich schnell bewegen: es dreht sich.

Genau der gleiche Effekt lässt sich bei dem Janusteilchen beobachten. Es dreht sich solange, bis die schwarze Kappe in Richtung der größeren Helligkeit zeigt. Denn in dieser Position liegt die gesamte Grenzfläche zwischen Kappe und transparentem Teil in gleichmäßiger Helligkeit, sodass die Ausgleichsströmungen der Flüssigkeit überall gleich stark sind. Das Janusteilchen bewegt sich nun geradewegs zur dunkleren Seite hin. „Wir können durch einfache Modifikationen der Kugeloberfläche aber auch eine Bewegung zur helleren Seite hin erzeugen“, betont Celia Lozano, die als Postdoktorandin an Bechingers Institut arbeitet. Die Forscher haben somit ein denkbar einfaches Modell für die Fototaxis geschaffen.

Roboter als medizinische Patrouille werden greifbar

Fällt die Lichtintensität unter einen gewissen Wert ab, funktioniert der beschriebene Mechanismus allerdings nicht mehr. Bereits nach etwa einem Zehntel Millimeter weicht das Teilchen zunehmend von seinem Kurs ab. Um dieses Problem zu lösen, und die Mikroschwimmer auch über weitere Strecken zuverlässig zu navigieren, erzeugte Celia Lozano durch ein System aus einem Laser, Linsen und Spiegeln ein Lichtfeld mit einem Sägezahnprofil. Darin wechseln sich Bereiche mit abnehmender und zunehmender Helligkeit ab.

Die Passagen ansteigender und abfallender Helligkeit sind allerdings nicht gleich breit. In den vergleichsweise breiten Bereichen mit abfallender Lichtintensität steuern die Teilchenzielsicher zur dunkleren Region. In den Arealen mit ansteigender Intensität schwimmen sie dagegen vom Dunkeln ins Helle – sie behalten ihre ursprüngliche Richtung also bei. „Dies liegt daran, dass die Bereiche ansteigender Helligkeit so schmal sind, dass die Teilchen während ihres Durchlaufs keine Zeit haben, ihre Orientierung umzudrehen“, erklärt Borge ten Hagen, der diesen Effekt durch Computersimulationen bestätigen konnte. Insgesamt bewegen sich die Mikroschwimmer also kontinuierlich in eine Richtung.

Dass das System insgesamt sehr simpel ist, macht es interessant für Anwendungen. „Es lassen sich ohne großen Aufwand Millionen dieser Mikroschwimmer herstellen“, sagt Clemens Bechinger. Mit einer solchen Armada von zuverlässig steuerbaren Mikroteilchen lässt sich zum einen das Schwarmverhalten verschiedener Spezies modellhaft untersuchen. Zum anderen wird damit auch die Vision greifbarer, Robotern mit der Größe von Blutkörperchen zu erzeugen, die durch die Adern patrouillieren um Krankheitsherde wie etwa Tumore aufspüren und behandeln. Denn der von den Forschern entwickelte Orientierungsmechanismus funktioniert nicht nur in einem Hell-Dunkel-Übergang, sondern auch in einem chemischen Konzentrationsgefälle, welches üblicherweise in der Umgebung von Tumoren entsteht.

CJM

Kontakt:
Prof. Dr. Clemens Bechinger
Universität Stuttgart
Max-Planck-Institut für Intelligente Systeme, Stuttgart
Telefon:+49 711 6856-5218
E-Mail: c.bechinger@physik.uni-stuttgart.de

Originalpublikation:
Phototaxis of Synthetic Microswimmers in Optical Landscapes
Celia Lozano, Borge ten Hagen, Hartmut Löwen und Clemens Bechinger
Nature Communications, 30. September 2016; doi: 10.1038/NCOMMS12828

Weitere Informationen:
https://www.mpg.de/10757305/mikroschwimmer-fototaxis

Prof. Dr. Clemens Bechinger, Universität Stuttgart | Max-Planck-Institut für Intelligente Systeme, Standort Stuttgart, Stuttgart

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Fachhochschule Südwestfalen entwickelt innovative Zinklamellenbeschichtung
13.07.2018 | Fachhochschule Südwestfalen

nachricht 3D-Druck: Stützstrukturen verhindern Schwingungen bei der Nachbearbeitung dünnwandiger Bauteile
12.07.2018 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetische Wirbel: Erstmals zwei magnetische Skyrmionenphasen in einem Material entdeckt

Erstmals entdeckte ein Forscherteam in einem Material zwei unabhängige Phasen mit magnetischen Wirbeln, sogenannten Skyrmionen. Die Physiker der Technischen Universitäten München und Dresden sowie von der Universität zu Köln können damit die Eigenschaften dieser für Grundlagenforschung und Anwendungen gleichermaßen interessanten Magnetstrukturen noch eingehender erforschen.

Strudel kennt jeder aus der Badewanne: Wenn das Wasser abgelassen wird, bilden sie sich kreisförmig um den Abfluss. Solche Wirbel sind im Allgemeinen sehr...

Im Focus: Neue Steuerung der Zellteilung entdeckt

Wenn eine Zelle sich teilt, werden sämtliche ihrer Bestandteile gleichmässig auf die Tochterzellen verteilt. UZH-Forschende haben nun ein Enzym identifiziert, das sicherstellt, dass auch Zellbestandteile ohne Membran korrekt aufgeteilt werden. Ihre Entdeckung eröffnet neue Möglichkeiten für die Behandlung von Krebs, neurodegenerative Krankheiten, Alterungsprozessen und Virusinfektionen.

Man kennt es aus der Küche: Werden Aceto balsamico und Olivenöl miteinander vermischt, trennen sich die beiden Flüssigkeiten. Runde Essigtropfen formen sich,...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

Conference on Laser Polishing – LaP: Feintuning für Oberflächen

12.07.2018 | Veranstaltungen

Materialien für eine Nachhaltige Wasserwirtschaft – MachWas-Konferenz in Frankfurt am Main

11.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungsnachrichten

Maschinelles Lernen: Neue Methode ermöglicht genaue Extrapolation

13.07.2018 | Informationstechnologie

Fachhochschule Südwestfalen entwickelt innovative Zinklamellenbeschichtung

13.07.2018 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics