Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Z-Ultra gebrauchsfertig: Neue Chromstähle für Hochtemperaturanwendungen

21.12.2016

Als wichtigster Industriewerkstoff ist Stahl mit mehr als 2500 Sorten hoch spezialisiert für unterschiedliche Anwendungen. Kleinste Änderungen der Zusammensetzung können das Materialgefüge auf atomarer Skala ändern und das Materialverhalten »im Großen« verbessern. Das Konsortium des EU- Projekts Z-Ultra unter Leitung des Fraunhofer-Instituts für Werkstoffmechanik IWM entwickelte neue 12%-Chrom-Stähle für Hochtemperaturanwendungen, die bis zu 30% fester als herkömmliche 9%-Chrom-Stähle sind und im Kraftwerk längere Zeit höhere Temperaturen und Drücke aushalten. Atomistische Simulationsmethoden unterstützten hierbei die Stahl-Entwickler dabei, die Legierungen zielgerichtet zu entwickeln.

Höhere Betriebstemperaturen in Gas- und Kohlekraftwerken bedeuten höhere Wirkungsgrade und damit weniger CO2-Ausstoß pro Kilowattstunde Strom. Der Temperaturerhöhung sind jedoch von Natur aus Grenzen gesetzt.


Im Projekt Z-Ultra wurde ein 12-Tonnen-Schmiedestück als Demonstrator hergestellt.

Saarstahl


Z-Phasenbildung: Einzelne Chrom-Atome (Cr) aus der Eisenmatrix (Fe) (li.) diffundieren in Metallnitridteilchen hinein, bilden flache Cluster (Mitte) und diese wachsen zu periodischen Schichten (re.).

Fraunhofer IWM

Die in Kraftwerken eingesetzten Werkstoffe, in der Regel Stähle, verlieren mit steigender Temperatur ihre Festigkeit und halten den in Turbinen und Rohrleitungen herrschenden Belastungen nicht mehr stand. Zudem nimmt die Korrosion mit steigender Temperatur deutlich zu. Generationen von Ingenieurinnen und Ingenieuren arbeiteten deshalb an der weiteren Verbesserung der Stähle, sodass mit den heutigen 9%-Chrom-Stählen Betriebstemperaturen von 615 °C möglich sind gegenüber maximal 300 °C vor 100 Jahren.

Mehr Chrom im Stahl hat Vor- und Nachteile

Um die Betriebstemperatur weiter zu steigern, ist ein höherer Chromgehalt im Stahl erforderlich. Das Element Chrom hat die angenehme Eigenschaft, eine schützende Chromoxidschicht auf der Stahloberfläche zu bilden und das umso wirkungsvoller, je höher der Chromgehalt ist. Der dadurch verbesserte Korrosionsschutz erlaubt nicht nur höhere Temperaturen, sondern auch den Einsatz biologischer Abfälle und anderer erneuerbarer Brennstoffe, deren Verbrennungsprodukte sehr aggressiv sein können.

»Nun gibt es aber leider einen Pferdefuß, der die Nutzung höherer Chromgehalte bisher verhindert hat: Die bemerkenswerte Festigkeit der derzeit besten warmfesten Stähle beruht nämlich auf fein verteilten Nitrid-Teilchen«, erklärt Prof. Dr. Hermann Riedel, Projektleiter am Fraunhofer IWM. Chromatome können bei den Betriebstemperaturen in diese Teilchen einwandern und sie damit in die sogenannte Z-Phase umwandeln. Auf Kosten der feinen Nitride entstehen dann grobe Z-Phasenteilchen, die für die Festigkeit nutzlos sind.

»In den derzeitigen 9%-Chromstählen dauert diese unerwünschte Umwandlung Jahrzehnte, während sie bei 12% Chromgehalt schon in einem Jahr zu einem nicht tolerierbaren Festigkeitsabfall führt«, so Riedel. Deshalb seien die 12%-Chromstähle bisher nicht in Kraftwerken einsetzbar, da diese ja für eine Lebensdauer von mehr als zehn Jahre ausgelegt werden.

Der Trick: Z-Phase als Stabilisator nutzen

»Wir haben uns im Projekt Z-Ultra das Ziel gesetzt, die grobkörnige, spröde Z-Phase in ihrem Wachstum so zu beeinflussen, dass sie nicht mehr schädlich ist, sondern den Stahl im Gegenteil stabiler macht«, erklärt Riedel. »Wir haben Legierungszusammensetzungen und Herstellungsverfahren gesucht und gefunden, welche die Z-Phase ganz fein im Stahl verteilt – das führt zu einer langfristig stabilen Teilchenstruktur«, so der Physiker. Die besten der sieben im Projekt neu entwickelten Legierungen sind rund 30 % fester als die herkömmlichen 9%-Chromstähle, haben eine 10 Mal höhere Lebensdauer unter gleichen Belastungsbedingungen und ihre Korrosionsfestigkeit ist erheblich besser.

Rohre aus den neuen Werkstoffen wurden unter Bedingungen getestet, die denen im Überhitzer eines Kraftwerks-Wärmetauschers nahe kommen: heißer Wasserdampf im Inneren und korrosive Verbrennungsgase und Aschepartikel an der Außenseite. Die Versuche zeigten, dass das Korrosionsverhalten der Werkstoffe bis 647 °C immer noch sehr gut war. Die schützenden Oxidschichten waren gleichmäßig gewachsen – auf der Außenseite dicker als auf der Innenseite. Einige Rohre wurden auch im echten Kraftwerksbetrieb getestet. Sie wurden inzwischen entnommen, untersucht und erneut für Langzeittests in ein Kohlekraftwerk eingesetzt.

»Um die Praxistauglichkeit zu zeigen, hat der beteiligte Stahlhersteller ein großes, zwölf Tonnen schweres Schmiedestück angefertigt, denn nicht allein die chemische Zusammensetzung des Stahls ist für die Werkstoffeigenschaften verantwortlich, sondern auch der Herstellungsprozess, insbesondere die Wärmebehandlung«, erläutert Riedel. Schließlich ist es wichtig, dass die herausragenden Materialeigenschaften beim Schweißen der Rohrleitungen und anderer Kraftwerksteile erhalten bleiben. Ein Schwerpunkt im Projekt war deshalb die Entwicklung von geeigneten Schweißverfahren, bis hin zu Ringen aus dem großen Schmiedeteil als Modell für geschweißte Turbinenrotoren.

Simulations-Tools für zielgerichtete Legierungsentwicklung

Bei der Entwicklung der genauen Zusammensetzung der neuen Stähle und den Parametern für den Schmiedeprozess ließen sich die Stahlentwickler kontinuierlich von atomistischen Simulationen leiten. Um die Materialentwicklung durch den Einsatz numerischer Simulationsmethoden zu beschleunigen, untersuchten die Wissenschaftlerinnen und Wissenschaftler am Fraunhofer IWM mit atomistischen und thermodynamischen Simulationen Fragen wie »Auf welche Weise bildet sich die Z-Phase?« oder »Was passiert während der Herstellung und später im Betrieb auf atomarer Skala?«

Sie untersuchten gezielt das Verhalten und den Einfluss der unterschiedlichen Legierungsbestandteile und optimierten die atomare Zusammensetzung der Legierung mit ihren Ergebnissen. So lässt sich zum Beispiel sagen, bei welchem Gehalt an Kohlenstoff, Stickstoff, Niob oder Tantal der Prozess der Z-Phasenumwandlung am schnellsten oder am langsamsten vonstattengeht. Atomistische Simulationen trugen so maßgeblich dazu bei, die einzelnen Schritte in diesem komplexen Umwandlungsprozess zu identifizieren und deren gegenseitige Abhängigkeiten und Beeinflussung zu verstehen.

An dem EU-geförderten Projekt Z-Ultra beteiligten sich unter der Leitung des Fraunhofer-Instituts für Werkstoffmechanik IWM sechs weitere Forschungsinstitute sowie je ein Stahlhersteller, ein Kraftwerksbetreiber und eine Ingenieur-Beratungsfirma aus der EU und aus den östlichen Partnerländern Ukraine, Georgien und Armenien.

Hintergrundbox:
Stahl ist der ideale Werkstoff für Bauteile in Hochtemperaturanwendungen bis zu 600 °C, wie sie in Kraftwerken oder in der chemischen Industrie auftreten können. In den 1980er Jahren brachte die Entwicklung der 9%-Chromstähle einen großen Fortschritt, mit denen die Anwendungstemperatur von 540 auf 615 °C gesteigert werden konnte. Bei diesen Temperaturen halten Bauteile aus 9%-Chromstahl etwa 20 bis 30 Jahre. Inzwischen wurden 12%-Chromstähle entwickelt, die zwar höhere Temperaturen aushalten, die jedoch bisher eine geringere Bauteillebensdauer aufweisen. Um diese neuen Stähle für Industrieanwendungen zu qualifizieren, wurde das EU-Projekt Z-Ultra gestartet.

Die 12%-Chromstähle sind interessant, da die thermische Stromerzeugung aus fossilen Brennstoffen voraussichtlich noch für viele Jahre ein wichtiger Teil der Stromerzeugung sein wird: Sie wird die Schwankungen in der Stromerzeugung der erneuerbaren Energien im Stromnetz ausgleichen. Für wirtschaftlich aufstrebende Länder innerhalb und außerhalb der EU ist zudem zu erwarten, dass die Anzahl von Kohle- und Gaskraftwerken ansteigen wird. Umso wichtiger ist es, deren Wirkungsgrad zu erhöhen, damit der Verbrauch der fossilen Brennstoffe sowie der CO2-Ausstoß möglichst gering bleiben.

Kontakt:
Prof. Dr. Hermann Riedel | Telefon +49 761 5142-103 | hermann.riedel@iwm.fraunhofer.de
Dr. Daniel Urban | Telefon +49 761 5142-378 | daniel.urban@iwm.fraunhofer.de

Weitere Informationen:

http://www.iwm.fraunhofer.de/presse-veranstaltungen-publikationen-preise/details... - PM mit druckfähigen Bildern

Katharina Hien | Fraunhofer-Institut für Werkstoffmechanik IWM

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund
22.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Nah dran an der Fiktion: Die Außenhaut für das Raumschiff „Enterprise“?
22.06.2018 | Technische Universität Chemnitz

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics