Winzige Defekte stören die Informationsübertragung zwischen organischen Magneten und Metalloxiden

Ein organisches Radikal näher sich dem Rutilkristallgitter (rot) – hier mit einer idealen Oberfläche ohne Defekte Abbildung: Benedetta Casu und Arrigo Calzolari

Magnete aus organischen Materialien haben gegenüber klassischen Magneten, die aus Metallen oder Legierungen der sogenannten Seltenerdmetalle bestehen, einige Vorteile: Sie sind chemisch flexibel, preisgünstig herzustellen und lassen sich gut für verschiedene Zwecke an unterschiedliche Designs anpassen.

In der Praxis wollen Wissenschaftler beide Arten von Magneten für Anwendungen in der Elektronik benutzen – in sogenannten Spintronik-Elementen, bei denen die Informationen nicht über Ladungen, sondern über den Spin der Moleküle transportiert werden. Der Spin ist ein Eigendrehimpuls, der Teilchen als charakteristische Eigenschaft innewohnt.

Reza Kakavandi, Professor Thomas Chassé und Dr. Benedetta Casu vom Institut für Physikalische und Theoretische Chemie der Universität Tübingen haben eine solche magnetische Schnittstelle zwischen Rutilkristallen, das heißt Oxiden des Metalls Titan, und einem rein organischen Magneten untersucht.

Sie entdeckten, dass der Übergang an der Grenzfläche äußerst empfindlich auf minimale Defekte in der Oberfläche der Materialien reagiert. Die Ergebnisse wurden im Fachjournal Nano Research veröffentlicht.

Rein organische Radikale bestehen aus leichten Elementen wie Kohlenstoff, Stickstoff und Sauerstoff und tragen mindestens ein ungepaartes Elektron, das ein dauerhaftes magnetisches Moment erzeugt. „Sie sind für eine ganze Reihe von Anwendungen interessant“, sagt Benedetta Casu, „sie werden inzwischen für Speicherelemente, Batterien, Sensoren und für Anwendungen in der Biomedizin genutzt.

Grundsätzlich ließen sie sich auch für die Konstruktion eines Quantencomputers einsetzen.“ In ihrer Studie untersuchten die Tübinger Wissenschaftler die Schnittstelle zwischen einem Einzelkristall des Minerals Rutil und einem organischen Radikal mithilfe eines hoch aufgelösten Röntgenspektroskopie-Verfahrens und theoretischen Berechnungen, die von Dr. Arrigo Calzolari vom Institut für Nanowissenschaften in Modena (CNR-NANO) durchgeführt wurden. Die Wissenschaftler bezeichnen die Verbindung aus klassischem und organischem Magneten auch als Spinterface – zusammengesetzt aus „Spin“ und „Interface“, dem englischen Begriff für Schnittstelle.

„Im Experiment wurden die organischen Radikale physikalisch festgehalten, das magnetische Moment wurde zwischen den unterschiedlichen Materialien erhalten“, sagt Benedetta Casu. Das habe gut funktioniert. Allerdings habe sich die Situation völlig verkehrt, wenn der Rutil an der Übertragungsstelle einen winzigen Defekt gehabt habe, eine nicht hundertprozentig regelmäßige Anordnung der Oberfläche. „In diesem Fall wurde das organische Radikal von der reaktionsfreudigen Defektstelle chemisch gebunden, sodass sein magnetisches Moment ausgelöscht wurde“, erläutert die Wissenschaftlerin.

Der Ansatz mit der Kombination aus Röntgenspektroskopie und theoretischen Berechnungen habe sich als besonders geeignet erwiesen, um die Mechanismen an der komplexen Schnittstelle zu verstehen. Man müsse sowohl die Ladungsverhältnisse als auch das Spinverhalten beschreiben. Zum ersten Mal sei klar geworden, welche wichtigen Einflüsse von den Oberflächendefekten an einem solchen Spinterface ausgehen. „Das ist ein wichtiges Ergebnis von allgemeiner Gültigkeit von der Chemie bis zur Physik sowie für die Materialwissenschaften“, sagt die Wissenschaftlerin.

Originalpublikation:
Reza Kakavandi, Arrigo Calzolari, Yulia B. Borozdina, Prince Ravat, Thomas Chassé, Martin Baumgarten, and M. Benedetta Casu: Unraveling the mark of surface defects on a spinterface: The nitronyl nitroxide/TiO2(110) interface. Nano Research, DOI 10.1007/s12274-016-1228-1

Kontakt:
PD Dr. Benedetta Casu
Universität Tübingen
Institut für Physikalische und Theoretische Chemie
Telefon +49 7071 29-76252
benedetta.casu[at]uni-tuebingen.de

Media Contact

Dr. Karl Guido Rijkhoek idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.uni-tuebingen.de/

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Nanofasern befreien Wasser von gefährlichen Farbstoffen

Farbstoffe, wie sie zum Beispiel in der Textilindustrie verwendet werden, sind ein großes Umweltproblem. An der TU Wien entwickelte man nun effiziente Filter dafür – mit Hilfe von Zellulose-Abfällen. Abfall…

Entscheidender Durchbruch für die Batterieproduktion

Energie speichern und nutzen mit innovativen Schwefelkathoden. HU-Forschungsteam entwickelt Grundlagen für nachhaltige Batterietechnologie. Elektromobilität und portable elektronische Geräte wie Laptop und Handy sind ohne die Verwendung von Lithium-Ionen-Batterien undenkbar. Das…

Wenn Immunzellen den Körper bewegungsunfähig machen

Weltweit erste Therapie der systemischen Sklerose mit einer onkologischen Immuntherapie am LMU Klinikum München. Es ist ein durchaus spektakulärer Fall: Nach einem mehrwöchigen Behandlungszyklus mit einem immuntherapeutischen Krebsmedikament hat ein…

Partner & Förderer