Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Magnetfelder Zwillingsbildung in Kristallen beheben können

31.01.2018

Eine spezielle Kopplung magnetischer Momente in Hochtemperatursupraleitern ermöglicht es, kristalline Teilbereiche zu verschieben und auf diese Weise Einkristalle zu perfektionieren.

Für die Untersuchung neuer Materialien, wie etwa Hochtemperatursupraleiter, ist es in vielen Fällen wichtig, Messungen entlang unterschiedlicher Richtungen im Kristallgitter vornehmen zu können. Dies setzt aber Kristalle ohne interne Verdrehungen, sogenannte Verzwilligungen, voraus.


Darstellung der für die magnetische Entzwilligung in orthorhombischem EuFe₂As₂ relevanten Wechselwirkungen. Wesentlich ist eine bi-quadratische Kopplung (K), dargestellt durch blau-rote Pfeile.

© Universität Augsburg/IfP/EKM

Die derzeit intensiv untersuchten Eisenpniktidsupraleiter zeigen Zwillingsdomänen, die bislang nur durch Anlegen eines hohen Druckes vermieden werden konnten. Das ist technisch sehr aufwendig und schränkt die Untersuchungsmöglichkeiten stark ein. Hier wurde wurde vor drei Jahren ein wichtiger Durchbruch erzielt: In mit Europium-Momenten präparierten Eisenpniktidsupraleitern wurden Zwillingsdomänen mit kleinen Magnetfeldern so verschoben, dass perfekte Entzwilligung erreicht wurde.

Dass dieser überraschende und neuartige Effekt auf einer speziellen magnetischen Wechselwirkung zwischen den magnetischen Momenten von Europium und Eisen basiert, zeigen die Augsburger Physiker Prof. Dr. Philipp Gegenwart und Dr. Jannis Maiwald (Lehrstuhl für Experimentalphysik VI/EKM) und ihr Kollege Dr. Igor I. Mazin vom Naval Research Laboratory in Washington (USA) jetzt in einem Artikel in der Fachzeitschrift Physical Review X.

Die meisten Ausgangsverbindungen moderner Hochtemperatursupraleiter, der sogenannten Eisenpniktide, weisen einen Phasenübergang auf, bei dem sich die Kristallstruktur innerhalb der tetragonalen Ebene verzerrt. Diese Verzerrung führt zur Bildung von Zwillingsdomänen auf Mikrometer-Skala, durch die die Richtungsabhängigkeit wichtiger physikalischer Eigenschaften verschleiert wird.

Vor drei Jahren bereits haben Physiker der Universitäten Augsburg, Göttingen, Stuttgart und San Diego einen bemerkenswerten Effekt in der Verbindung EuFe₂As₂ entdeckt: Durch Anlegen kleiner Magnetfelder kann man Kristallgitterdomänenwände bei tiefen Temperaturen verschieben und so einen entzwillingten Zustand erreichen. In wachsenden Magnetfeldern kann sogar mehrfach zwischen verschiedenen Kristallausrichtungen hin- und hergeschaltet werden.

Dieser Effekt ermöglicht es, die Richtungsabhängigkeit der Eigenschaften, die als Schlüssel zum Verständnis der Hochtemperatursupraleitung gilt, besser zu untersuchen. Es bedarf hierzu allerdings einer stichhaltigen Erklärung, wodurch dieser Effekt bewirkt wird. In der Fachzeitschrift Physical Review X liefern Maiwald, Mazin und Gegenwart eine solche Erklärung nun in Form einer umfassenden quantitativen Beschreibung dieser sehr ungewöhnlichen Kopplung zwischen Kristallgitter und angelegtem Magnetfeld.

Die untersuchte Verbindung EuFe₂As₂ besitzt zwei Sorten magnetischer Momente, die einerseits von stark lokalisierten 4f-Orbitalen der Europium Atome und andererseits von vorwiegend delokalisierten 3d-Orbitalen der Eisen Atome stammen. Da Eisenpniktide ohne Europium-Momente kein vergleichbares Verhalten zeigen, liegt es auf der Hand, dass die Europium-Momente eine wichtige Rolle bei der Entzwilligung spielen. Deren Kopplung an das Kristallgitter ist allerdings viel zu schwach, um die Beobachtungen zu erklären.

Der entscheidende Punkt bei der theoretischen Beschreibung war daher die Modellierung der Wechselwirkung zwischen den Europium- und Eisen-Momenten. Aufgrund der symmetrischen Anordnung der Momente in EuFe₂As₂ scheidet die normale, sogenannte lineare Heisenberg-Kopplung aus. "Erst durch die Einführung einer kleinen bi-quadratischen Kopplung, welche die Parallelstellung von Europium- und Eisenmomenten begünstigt, ist es uns gelungen, die experimentellen Beobachtungen zu verstehen und quantitativ exakt zu beschreiben", berichtet Gegenwart.

Die von seinen beiden Kollegen und ihm in Physical Review X publizierte Theorie sagt – über die Beschreibung der bisherigen experimentellen Beobachtungen hinaus – für sehr hohe Magnetfelder weitere schlagartige Änderungen der Kristallausrichtung in der Verbindung EuFe₂As₂ voraus. Erste Anzeichen hierfür habe man bereits beobachten können. "Generell", so Gegenwart, "ermöglicht die magnetfeldinduzierte Entzwilligung eine Reihe neuer Untersuchungsmethoden zum Studium der richtungsabhängigen Eigenschaften von Hochtemperatur-Supraleitern. Damit ergeben sich neue Möglichkeiten, ein verbessertes Verständnis dieser faszinierenden Materialien zu erlangen."


Publikation:
Jannis Maiwald, I.I. Mazin, and Philipp Gegenwart, Microscopic Theory of Magnetic Detwinning in Iron-Based Superconductors with Large-Spin Rare Earths, Physical Review X, 8, 011011 (2018), http://doi.org/10.1103/PhysRevX.8.011011


Kontakt:
Prof. Dr. Philipp Gegenwart
Lehrstuhl für Experimentalphysik VI/EKM
Universität Augsburg
86135 Augsburg
Telefon 0821/598-3650
philipp.gegenwart@physik.uni-augsburg.de
http://www.physik.uni-augsburg.de/de/exp6/

Weitere Informationen:

http://doi.org/10.1103/PhysRevX.8.011011


Klaus P. Prem | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund
22.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Nah dran an der Fiktion: Die Außenhaut für das Raumschiff „Enterprise“?
22.06.2018 | Technische Universität Chemnitz

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics