Wie Balsam auf die Wunde: Fraunhofer IMWS entwickelt biobasierte Verbundmaterialien für die Haut

Spuren der Zeit auf der Mikrostrukturebene: Rasterelektronenmikroskopische Aufnahmen von Elastinfasern der Haut eines 6- (l.) und 90-jährigen (r.) Probanden. Fraunhofer IMWS

Die Versorgung schlecht heilender Hautverletzungen, beispielsweise bei chronischen Wunden oder Brandwunden, ist eine medizinische Herausforderung: Neben menschlichen und tierischen Hautlappen, die nur in sehr begrenztem Maße zur Verfügung stehen, kommen vor allem Gerüststrukturen aus synthetischen Polymeren zur Wundabdeckung zum Einsatz.

Diese Materialien können jedoch meist nur temporär auf der Wunde verbleiben und sind nicht elastisch wie die unversehrte Haut: Es kommt zu Kontraktionen und Spannungen. Das ist nicht nur unangenehm für den Patienten, sondern erhöht auch das Risiko, dass die Wundheilung nicht richtig funktioniert.

Hier setzt das Projekt »SkinNext« an, das sich die Entwicklung neuartiger Biomaterialien für dermale Anwendungen zum Ziel gesetzt hat. Vorbild sind dabei die natürlichen Faserproteine Elastin und Kollagen. Dass Haut, Lungengewebe, Blutgefäße oder Knorpel zugleich so elastisch, robust und widerstandsfähig sind und die Belastungen eines ganzen Lebens bewältigen, ist in erster Linie dem Zusammenspiel dieser beiden Proteine zu verdanken:

Fasern aus Kollagen weisen eine äußerst hohe Zugfestigkeit auf und verleihen auf diese Weise den Geweben Stabilität. Elastin besitzt dazu komplementäre Eigenschaften und ist als Hauptbestandteil elastischer Fasern für die Elastizität und Dehnungsfestigkeit vieler Gewebe verantwortlich.

Dr. Christian Schmelzer, der das Projekt »SkinNext« am Fraunhofer IMWS betreut, befasst sich seit Jahren mit der Bildung elastischer Fasern in menschlichen Geweben und ihrer Schädigung durch Alterungsvorgänge und Krankheiten. Er ist ein international ausgewiesener Experte auf diesem Gebiet und war vor seiner Tätigkeit am Fraunhofer IMWS beispielsweise am Fachbereich Biologie des Technion in Haifa (Israel) tätig und leitete die Arbeitsgruppe Elastin am Institut für Pharmazie der Martin-Luther-Universität Halle-Wittenberg, wo er weiterhin lehrt. Für seine Dissertation zum Thema »Massenspektrometrische Charakterisierung von Proteinhydrolysaten: Verdaustudien an β-Casein und Strukturuntersuchungen an Elastin« hat er mehrere Preise erhalten.

»Elastin ist ein faszinierendes Protein mit außergewöhnlichen mechanischen und biochemischen Eigenschaften. Es gehört allerdings zu den wenigen Proteinen, die vom Körper nur einmal gebildet werden. Auch im Falle einer Beschädigung wird Elastin praktisch nicht mehr erneuert. Deshalb hat Narbengewebe nicht dieselben Eigenschaften wie unverletzte Haut. Vor allem bei großflächigen Verletzungen führt das häufig zu Problemen«, sagt der 39-Jährige.

Gemeinsam mit seinem Team will er im auf fünf Jahre angelegten Projekt Ausgangsstoffe, die auf Kollagen und Elastin basieren, zu neuartigen Biomaterialien kombinieren. »Diese natürlichen Ausgangsstoffe vereinen immunologische Verträglichkeit, Haltbarkeit und biologische Abbaubarkeit mit günstigen mechanischen Eigenschaften«, umschreibt Schmelzer die Vorteile des Ansatzes.

Das optimale Design der neuen Materialien geht einher mit ihrer umfassenden Charakterisierung der Mikrostruktur und der molekularen Ebene. Mit Techniken wie der Elektronenmikroskopie und der organischen Massenspektrometrie lässt sich herausfinden, ob die Materialien wirklich Struktur und Eigenschaften des neu entstehenden Gewebes verbessern und die Narbenbildung vermindern können. Nach und nach sollen so Biomaterialien entstehen, die bisherigen Lösungen überlegen und möglichst günstig herstellbar sind.

»Das Projekt ordnet sich sehr gut in die strategische Weiterentwicklung des Fraunhofer IMWS ein. Wir bringen unsere Kompetenzen in Mikrostrukturdiagnostik und im mikrostrukturbasierten Materialdesign ein und eröffnen damit die Möglichkeit, eine neue Qualität in der materialwissenschaftlichen Diagnostik von humanem Weichgewebe aufzubauen«, sagt Prof. Ralf B. Wehrspohn, Leiter des Fraunhofer IMWS. »Ich freue mich sehr, dass es uns gelungen ist, Herrn Schmelzer im Rahmen des Fraunhofer-Attract-Förderprogramms an unser Institut zu holen, um elastinbasierte Verbundmaterialien marktnah in Richtung Anwendung voranzutreiben.«

https://www.imws.fraunhofer.de/de/presse/pressemitteilungen/imws-biobasierte-ver…

Media Contact

Michael Kraft Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer