Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn Eiweiße einander die Hand geben

19.02.2018

Jenaer Materialwissenschaftler erzeugen innovatives Nanomaterial aus Naturstoffen

Ob in Spinnenseide, Holz, dem Raum zwischen Körperzellen, in Sehnen oder als natürliche Abdeckung kleiner Wunden: Fasern aus Eiweißen finden sich in der Natur sehr häufig. Die kleinen Eiweißfasern, von Experten auch Proteinnanofasern genannt, weisen häufig hervorragende Eigenschaften, wie hohe Festigkeit, Bioabbaubarkeit oder antibakterielle Wirkung auf.


Hybrid-Proteinnanofasern bei der Entstehung.

Bild: Dr. Izabela Firkowska-Boden/FSU Jena

Der Nachbau solcher Proteinfasern ist nicht einfach, geschweige denn, diesen Fasern spezifische Funktionen zuzuordnen. Dass und wie es gelungen ist, Fasern mit neuen Eigenschaften zu erzeugen, beschreiben Materialwissenschaftler der Friedrich-Schiller-Universität Jena in der aktuellen Ausgabe der renommierten Fachzeitschrift „ACS NANO“ (DOI: 10.1021/acsnano.7b07196). Unterstützt wurden sie dabei von einem Team vom Leibniz-Institut für Photonische Technologien Jena (Leibniz-IPHT).

„Proteinfasern bestehen aus mehreren natürlichen Eiweiß-Makromolekülen“, erklärt Prof. Dr. Klaus D. Jandt vom Otto-Schott-Institut für Materialforschung der Uni Jena und fährt fort: „Die Natur baut diese Nanomaterialien, die einen Durchmesser von etwa einem Tausendstel eines menschlichen Haares aufweisen, durch Selbstorganisationsprozesse.“

Was für die Natur mit ihrer Jahrmillionen langen Erfahrung kein Problem ist, lässt sich aber meist nicht so einfach vom Menschen nachbauen. Dennoch gelang es Prof. Jandt und seiner Gruppe in den vergangenen Jahren, Proteinnanofasern aus den natürlichen Proteinen Fibrinogen und Fibronektin zu erzeugen und die Größe und die Struktur dieser Fasern – linear oder verzweigt – zu steuern.

Proteinnanofasern mit definierten Eigenschaften

Als nächstes hatten die Forscher um Prof. Jandt sich das Ziel gesetzt, bestimmte Eigenschaften der Proteinnanofasern vorzugeben, um diese später als Bausteine in Biosensoren, Wirkstofftransportpartikeln, optischen Sonden oder Knochenzementen einzusetzen. Dabei hatten die Jenaer Materialforscher die Idee, zwei verschiedene Eiweiße in einer sich selbst zusammenbauenden Proteinnanofaser zu kombinieren, um so neue Fasereigenschaften zu erzeugen. Jandt und sein Team hatten Erfolg: Sie nutzten dazu das Protein Albumin, das für den osmotischen Druck im Blut verantwortlich ist, und Hämoglobin, das Eiweiß des roten Blutfarbstoffs, das zum Sauerstofftransport im Blut dient. Beide Proteine wurden von den Forschern in Ethanol gelöst und anschließend auf 65 °C erwärmt. Dabei bildeten sich – über mehrere Zwischenstufen – scheinbar selbstständig erstmals neue Hybrid-Proteinnanofasern, die beide Eiweiße enthielten. Dabei geben die beiden Proteine sich quasi die Hand, das heißt, es verbinden sich ähnliche Abschnitte der beiden Proteine zu einer Faser.

„Der Nachweis, dass diese neuen Hybrid-Proteinnanofasern wirklich beide Proteine enthalten, war nicht einfach, da diese Fasern so winzig sind und es kaum Mikroskopiemethoden gibt, die Details in den Fasern sehen können“, erklärt Klaus Jandt und ergänzt: „Bei diesem Nachweis haben uns Prof. Deckert und sein Team vom Leibniz-Institut für Photonische Technologien entscheidend unterstützt.“ Prof. Dr. Volker Deckert und seine Mitarbeiter fanden in den neuen Hybrid-Proteinnanofasern optische Signale, die sowohl für Albumin, als auch für das Hämoglobin typisch sind wie der Fingerabdruck für einen Menschen. Sie setzten dafür die sogenannte Tip-enhanced Raman Spectroscopy (TERS) ein. „Durch die extreme Empfindlichkeit des Verfahrens konnten wir die unterschiedlichen Proteine sogar ohne spezielle Markierungen unterscheiden und in enger Kooperation mit den Kollegen von Prof. Jandt auch eindeutig zuordnen“, sagt Prof. Deckert vom Leibniz-IPHT in Jena.

Biomimetische Prinzipien für die Werkstoffe der Zukunft

In der Erzeugung und dem Nachweis der neuen Nanofasern, die aus mehreren Eiweißen bestehen, sehen die Jenaer Forscher einen Durchbruch. Mit den innovativen Fasern können jetzt ganz neue, größere Strukturen mit gewünschten Eigenschaften gezielt aufgebaut werden, die vorher nicht möglich waren. Netzwerke aus den neuen Nanofasern sollen in Zukunft z. B. als neues Material zur Regeneration von Knochen und Knorpel genutzt werden. „Dadurch ist das Tor aufgestoßen für eine ganz neue Generation von funktionellen Materialien für die Medizintechnik, die Nanoelektronik, Sensorik oder die Optik, die auf natürlichen Stoffen und Bauprinzipien basieren", ist sich Prof. Jandt sicher und ergänzt: „Diese biomimetischen Prinzipien werden die Werkstoffe der Zukunft entscheidend bestimmen.“ Die Jenaer Forscher sind zuversichtlich, dass dieser neue Selbstorganisationsansatz erfolgreich auf andere Proteine übertragen werden kann, wenn diese in Teilen die gleichen Aminosäuresequenzen aufweisen.

Dieses Projekt wurde von der Deutschen Forschungsgemeinschaft (DFG) unter dem Projektnamen „Neue funktionelle Materialien basierend auf selbstassemblierten Protein-Nanofasern: Erzeugung und Verständnis von Nanofasern“ gefördert.

Original-Publikation:
Christian Helbing, Tanja Deckert-Gaudig, Izabela Firkowska-Boden, Gang Wei, Volker Deckert , and Klaus D. Jandt: Protein Handshake on the Nanoscale: How Albumin and Hemoglobin Self-Assemble into Nanohybrid Fibers. ACS NANO (2018). DOI: 10.1021/acsnano.7b07196

Kontakt:
Prof. Dr. Klaus D. Jandt
Otto-Schott-Institut für Materialforschung der Universität Jena
Löbdergraben 32, 07743 Jena
Tel.: 03641 / 947730
E-Mail: k.jandt[at]uni-jena.de

Prof. Dr. Volker Deckert
Leibniz-Institut für Photonische Technologien e. V.
Albert-Einstein-Straße 9
07745 Jena
E-Mail: volker.deckert[at]uni-jena.de

Weitere Informationen:

http://www.uni-jena.de

Axel Burchardt | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht TFK entwickelt Herstellungsverfahren für großflächige Metalldrahtnetze zum Einsatz in der Raumfahrt
09.07.2020 | Hochschule Hof - University of Applied Sciences

nachricht Löchrige Graphenbänder mit Stickstoff für Elektronik und Quantencomputing
08.07.2020 | Universität Basel

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektrische Spannung aus Elektronenspin – Batterie der Zukunft?

Forschern der Technischen Universität Ilmenau ist es gelungen, sich den Eigendrehimpuls von Elektronen – den sogenannten Elektronenspin, kurz: Spin – zunutze zu machen, um elektrische Spannung zu erzeugen. Noch sind die gemessenen Spannungen winzig klein, doch hoffen die Wissenschaftler, auf der Basis ihrer Arbeiten hochleistungsfähige Batterien der Zukunft möglich zu machen. Die Forschungsarbeiten des Teams um Prof. Christian Cierpka und Prof. Jörg Schumacher vom Institut für Thermo- und Fluiddynamik wurden soeben im renommierten Journal Physical Review Applied veröffentlicht.

Laptop- und Handyspeicher der neuesten Generation nutzen Erkenntnisse eines der jüngsten Forschungsgebiete der Nanoelektronik: der Spintronik. Die heutige...

Im Focus: Neue Erkenntnisse über Flüssigkeiten, die ohne Widerstand fließen

Verlustfreie Stromleitung bei Raumtemperatur? Ein Material, das diese Eigenschaft aufweist, also bei Raumtemperatur supraleitend ist, könnte die Energieversorgung revolutionieren. Wissenschaftlern vom Exzellenzcluster „CUI: Advanced Imaging of Matter“ an der Universität Hamburg ist es nun erstmals gelungen, starke Hinweise auf Suprafluidität in einer zweidimensionalen Gaswolke zu beobachten. Sie berichten im renommierten Magazin „Science“ über ihre Experimente, in denen zentrale Aspekte der Supraleitung in einem Modellsystem untersucht werden können.

Es gibt Dinge, die eigentlich nicht passieren sollten. So kann z. B. Wasser nicht durch die Glaswand von einem Glas in ein anderes fließen. Erstaunlicherweise...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Im Takt der Atome: Göttinger Physiker nutzen Schwingungen von Atomen zur Kontrolle eines Phasenübergangs

Chemische Reaktionen mit kurzen Lichtblitzen filmen und steuern – dieses Ziel liegt dem Forschungsfeld der „Femtochemie“ zugrunde. Mit Hilfe mehrerer aufeinanderfolgender Laserpulse sollen dabei atomare Bindungen punktgenau angeregt und nach Wunsch aufgespalten werden. Bisher konnte dies für ausgewählte Moleküle realisiert werden. Forschern der Universität Göttingen und des Max-Planck-Instituts für biophysikalische Chemie in Göttingen ist es nun gelungen, dieses Prinzip auf einen Festkörper zu übertragen und dessen Kristallstruktur an der Oberfläche zu kontrollieren. Die Ergebnisse sind in der Fachzeitschrift Nature erschienen.

Das Team um Jan Gerrit Horstmann und Prof. Dr. Claus Ropers bedampfte hierfür einen Silizium-Kristall mit einer hauchdünnen Lage Indium und kühlte den Kristall...

Im Focus: Neue Methode führt zehnmal schneller zum Corona-Testergebnis

Forschende der Universität Bielefeld stellen beschleunigtes Verfahren vor

Einen Test auf SARS-CoV-2 durchzuführen und auszuwerten dauert aktuell mehr als zwei Stunden – und so kann ein Labor pro Tag nur eine sehr begrenzte Zahl von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Intensiv- und Notfallmedizin: „Virtueller DIVI-Kongress ist ein Novum für 6.000 Teilnehmer“

08.07.2020 | Veranstaltungen

Größte nationale Tagung für Nuklearmedizin

07.07.2020 | Veranstaltungen

Corona-Apps gegen COVID-19: Nationalakademie Leopoldina veranstaltet internationales virtuelles Podiumsgespräch

07.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erster Test für neues Roboter-Umweltmonitoring-System der TU Bergakademie Freiberg

10.07.2020 | Informationstechnologie

Binnenschifffahrt soll revolutioniert werden: Erst ferngesteuert, dann selbstfahrend

10.07.2020 | Verkehr Logistik

Robuste Hochleistungs-Datenspeicher durch magnetische Anisotropie

10.07.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics