Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Weltweit kleinstes Fachwerk

02.02.2016

Das kleinste von Menschen gemachte Fachwerk haben Forscher des KIT nun in der Fachzeitschrift Nature Materials vorgestellt. Mit Strebenlängen von unter einem Mikrometer und Strebendurchmessern von 200 Nanometern sind seine Bauteile aus glasartigem Kohlenstoff rund einen Faktor fünf kleiner als vergleichbare sogenannte Metamaterialien. Durch die kleine Dimension werden bisher unerreichte Verhältnisse von Festigkeit zu Dichte erzielt. Anwendungen als Elektroden, Filter oder optische Bauteile könnten möglich werden. (DOI: 10.1038/nmat4561)

„Leichtbau-Werkstoffe wie Knochen und Holz findet man überall in der Natur“, erklärt Dr.–Ing. Jens Bauer vom Karlsruher Institut für Technologie, Erstautor der Studie. „Sie vereinen hohe Tragkraft und kleines Gewicht und sind so ein Vorbild für mechanische Metamaterialien für technische Anwendungen.“


Erst unter dem Mikroskop kann man das weltweit kleinste Fachwerk erkennen, dessen Strebendurchmesser 0,2 und die Gesamtgröße rund 10 Mikrometer betragen.

Bild: J.Bauer/KIT

Metamaterialien sind Stoffe, deren Struktur im Größenbereich von Mikrometern (millionstel Meter) gezielt so geplant und hergestellt werden, dass sie mechanische oder etwa optische Eigenschaften besitzen, die unstrukturierte Feststoffe prinzipiell nicht erreichen können.

Beispiele sind Tarnkappen, die Licht, Schall oder Wärme um Objekte herum leiten, Materialien, die kontra-intuitiv auf Druck und Scherung reagieren (auxetisch) oder Leichtbau-Nanowerkstoffe, die hohe spezifische Stabilität aufweisen (Kraft pro Fläche und Dichte).

Für das nun vorgestellte stabile Fachwerk, mit den weltweit, kleinsten Strukturen, nutzte Bauer zunächst die bewährte 3-D-Laserlithografie. Laserstrahlen härten computergesteuert die gewünschte mikrometergroße Struktur in einem Photolack aus.

Die Auflösung des Verfahrens erlaubt es allerdings nur, Streben von rund 5-10 Mikrometer Länge und einem Mikrometer Durchmesser zu erstellen. Im anschließenden Schritt wird die Struktur mittels Pyrolyse geschrumpft und verglast. Damit wird erstmals bei der Herstellung mikrostrukturierte Fachwerke Pyrolyse genutzt:

Das Objekt wird in einem Vakuum-Ofen Temperaturen von rund 900 Grad Celsius ausgesetzt, wodurch die chemischen Bindungen sich neu orientieren. Dabei entweichen alle Elemente aus dem Lack außer dem Kohlenstoff, welcher in seiner ungeordneten Form als Glaskohlenstoff in der geschrumpften Fachwerkstruktur zurückbleibt. Die gewonnenen Strukturen setzen die Forscher mit einem Stempel unter Druck und testeten so ihre Stabilität.

„Die Ergebnisse zeigen, dass die Belastbarkeit des Fachwerks sehr nahe an der theoretisch Möglichen und weit über der von unstrukturiertem glasartigem Kohlenstoff liegt“, berichtet Prof. Oliver Kraft, Mitautor der Studie. Er war bis Ende letzten Jahres Leiter des Instituts für Angewandte Materialien des KIT und ist seit diesem Jahr Vizepräsident für Forschung des KIT. „Diamant ist noch der einzige Feststoff, der eine höhere spezifische Stabilität aufweist.“

Mikrostrukturierte Materialien dienen oft zur Isolation oder als Stoßdämpfer. Offenporige Stoffe können als Filter in der chemischen Industrie genutzt werden. Metamaterialien haben auch außergewöhnliche optische Eigenschaften, die in der Telekomunikation eingesetzt werden können. Glaskohlenstoff ist ein hochtechnologischer Werkstoff aus reinem Kohlenstoff, der glasartige keramische Eigenschaften mit denen des Graphits vereint. Er ist als Werkstoff in Elektroden von Batterien oder Elektrolyseanlagen interessant.

Approaching Theoretical Strength in Glassy Carbon Nanolattices, J. Bauer, A. Schroer, R. Schwaiger and O. Kraft, DOI 10.1038/nmat4561

Weitere Presseinformationen zu dem Thema:

https://www.kit.edu/kit/pi_2014_14594.php

https://www.kit.edu/kit/pi_2015_tarnkappe-koennte-solarzellen-effizienz-erhoehen...

https://www.kit.edu/kit/pi_2013_12589.php

Weiterer Kontakt:
Kosta Schinarakis, PKM – Themenscout, Tel.: +49 721 608 41956, Fax: +49 721 608 43658, E-Mail: schinarakis@kit.edu

Das Karlsruher Institut für Technologie (KIT) verbindet seine drei Kernaufgaben Forschung, Lehre und Innovation zu einer Mission. Mit rund 9 400 Mitarbeiterinnen und Mitarbeitern sowie 24 500 Studierenden ist das KIT eine der großen natur- und ingenieurwissenschaftlichen Forschungs- und Lehreinrichtungen Europas.

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Das KIT ist seit 2010 als familiengerechte Hochschule zertifiziert.

Diese Presseinformation ist im Internet abrufbar unter: http://www.kit.edu

Weitere Informationen:

https://www.kit.edu/kit/pi_2014_14594.php
https://www.kit.edu/kit/pi_2015_tarnkappe-koennte-solarzellen-effizienz-erhoehen...
https://www.kit.edu/kit/pi_2013_12589.php

Monika Landgraf | Karlsruher Institut für Technologie

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Schutzmasken aus dem 3D-Drucker
27.03.2020 | Universität Duisburg-Essen

nachricht Komplexe Zelluloseobjekte drucken
25.03.2020 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hannoveraner Physiker entwickelt neue Photonenquelle für abhörsichere Kommunikation

Ein internationales Team unter Beteiligung von Prof. Dr. Michael Kues vom Exzellenzcluster PhoenixD der Leibniz Universität Hannover hat eine neue Methode zur Erzeugung quantenverschränkter Photonen in einem zuvor nicht zugänglichen Spektralbereich des Lichts entwickelt. Die Entdeckung kann die Verschlüsselung von satellitengestützter Kommunikation künftig viel sicherer machen.

Ein 15-köpfiges Forscherteam aus Großbritannien, Deutschland und Japan hat eine neue Methode zur Erzeugung und zum Nachweis quantenverstärkter Photonen bei...

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Im Focus: Nachwuchswissenschaftler der Universität Rostock erfinden einen Trichter für Lichtteilchen

Physiker der Arbeitsgruppe von Professor Alexander Szameit an der Universität Rostock ist es in Zusammenarbeit mit Kollegen von der Universität Würzburg gelungen, einen „Trichter für Licht“ zu entwickeln, der bisher nicht geahnte Möglichkeiten zur Entwicklung von hypersensiblen Sensoren und neuen Technologien in der Informations- und Kommunikationstechnologie eröffnet. Die Forschungsergebnisse wurden jüngst im renommierten Fachblatt Science veröffentlicht.

Der Rostocker Physikprofessor Alexander Szameit befasst sich seit seinem Studium mit den quantenoptischen Eigenschaften von Licht und seiner Wechselwirkung mit...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

Im Focus: Künstliche Intelligenz findet das optimale Werkstoffrezept

Die möglichen Eigenschaften nanostrukturierter Schichten sind zahllos – wie aber ohne langes Experimentieren die optimale finden? Ein Team der Materialforschung der Ruhr-Universität Bochum (RUB) hat eine Abkürzung ausprobiert: Mit einem Machine-Learning-Algorithmus konnten die Forscher die strukturellen Eigenschaften einer solchen Schicht zuverlässig vorhersagen. Sie berichten in der neuen Fachzeitschrift „Communications Materials“ vom 26. März 2020.

Porös oder dicht, Säulen oder Fasern

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Europäischer Rheumatologenkongress EULAR 2020 wird zum Online-Kongress

30.03.2020 | Veranstaltungen

“4th Hybrid Materials and Structures 2020” findet web-basiert statt

26.03.2020 | Veranstaltungen

Wichtigste internationale Konferenz zu Learning Analytics findet statt – komplett online

23.03.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Corona-Pandemie: Medizinischer Vollgesichtsschutz aus dem 3D-Drucker

31.03.2020 | Medizin Gesundheit

Jade Hochschule entwickelt Messverfahren zur Prüfung von Schweißnähten unter Wasser

31.03.2020 | Verfahrenstechnologie

Phagen-Kapsid gegen Influenza: Passgenauer Inhibitor verhindert virale Infektion

31.03.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics