Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wechselwirkung von RGD mit magnetischen Formgedächtnislegierungen

14.11.2012
Eine Arbeitsgruppe am Leibniz Institut für Oberflächenmodifizierung e.V. und Translationszentrum für Regenerative Medizin hat zusammen mit der Fakultät für Physik und Geowissenschaften die Wechselwirkung von RGD mit magnetischen Formgedächtnislegierungen untersucht und nun im renommierten Fachjournal „ Advanced Functional Materials“ veröffentlicht (DOI: 10.1002/adfm.201201789).

Mittels Dichtefunktionaltheorie-Computersimulationen, die vom Rechenumfang an die Leistungsfähigkeit aktueller Supercomputer heran reicht, konnten sie nachweisen, wie das RGD Molekül an die Legierung anbindet und dessen Bindungsenergie bestimmt.

Ferromagnetische Formgedächtnislegierungen gehören zu den sogenannten "intelligenten Materialen". Sie können ihre Form im externen Magnetfeld reversibel verändern und bieten so viele neue Anwendungen in der Medizin. In diesem Zusammenhang ist insbesondere die Legierung Eisen-Palladium

(Fe-Pd) interessant, da sie biokompatibel ist und lebendige Zellen an ihr anhaften können.

Diese Adhäsion von Zellen wird durch Rezeptoren an der Zelloberfläche, hauptsächlich sogenannte Integrine, gesteuert. Diese binden an die Aminosäuresequenz Arginin-Glycin-Asparagin (RGD) an, die in vielen Proteinen der extrazellulären Matrix im Körper vorhanden ist. RGD kann jedoch auch von den Zellen selber produziert werden.

Wie stark dieses adhäsionsunterstützende Molekül RGD an Fe-Pd anhaftet, ist entscheidend für die Biokompatibilität und die Nutzung des Materials in der Medizin: Haftet das RGD schwach, wird es von der Zelle abgerissen, diese kann nicht richtig anhaften und stirbt schließlich ab. Die Arbeitsgruppe von Prof. Stefan Mayr (Leibniz Institut für Oberflächenmodifizierung e.V. und Translationszentrum für Regenerative Medizin) hat nun zusammen mit Dr. Mareike Zink (Fakultät für Physik und Geowissenschaften) und den Doktoranden Florian Szillat und Uta Allenstein die Wechselwirkung von RGD mit magnetischen Formgedächtnislegierungen untersucht und gerade in dem renommierten Fachjournal Advanced Functional Materials veröffentlicht. Mittels Dichtefunktionaltheorie-Computersimulationen konnten sie nachweisen, wie das RGD Molekül an die Legierung anbindet und dessen Bindungsenergie bestimmt.

Experimentell konnten die beiden Arbeitsgruppen die Simulationsergebnisse erfolgreich bestätigen, indem sie die Abreißkräfte vom RGD gemessen und Zellen direkt auf der Legierung kultiviert haben. Hierbei war es möglich, die Adhäsionspunkte der Zelle mit dem Substrat zu beobachten, um die Adhäsionskraft zu quantifizieren.

Durch die Kombination von Simulation und Experiment war es erstmalig möglich zu zeigen, dass die Bindung von RGD an das Substrat eine Größenordnung stärker ist als die Haftung der Zelle an das RGD. Diese Ergebnisse bieten neue Möglichkeiten, magnetische Formgedächtnismaterialien durch RGD-Beschichtungen zu funktionalisieren und in der Zukunft deren Einsatz in der regenerativen Medizin zu ermöglichen.

Weitere Informationen:
Dr. Mareike Zink
Telefon: +49 341 97-32573
E-Mail: zink@physik.uni-leipzig.de
Prof. Dr. Stefan Mayr
Leibniz-Institut für Oberflächenmodifizierung e.V. (IOM) Leipzig
Telefon: +49 341 235-3368
E-Mail: stefan.mayr@iom-leipzig.de

Ronny Arnold | Universität Leipzig
Weitere Informationen:
http://www.iom-leipzig.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund
22.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Nah dran an der Fiktion: Die Außenhaut für das Raumschiff „Enterprise“?
22.06.2018 | Technische Universität Chemnitz

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics