Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wasserdicht dank Bakterienfilm: Neuer Mörtel lässt Flüssigkeit abperlen

25.07.2016

Feuchtigkeit kann Mörtel auf Dauer zerstören – etwa wenn sich durch Frost Risse bilden. Ein Team von Wissenschaftlerinnen und Wissenschaftlern der Technischen Universität München (TUM) hat einen ungewöhnlichen Weg gefunden, um Mörtel vor Feuchtigkeit zu schützen: Schon beim Anrühren der Masse fügen sie einen Biofilm hinzu, eine weiche, feuchte Substanz, die von Bakterien gebildet wird.

Mit Ziegeln, Mörtel und Beton hat Prof. Oliver Lieleg für gewöhnlich wenig zu tun. Als Professor für Biomechanik am Zentralinstitut für Medizintechnik (IMETUM) und der Fakultät Maschinenwesen beschäftigt er sich hauptsächlich mit Hydrogelen aus Biopolymeren, etwas flapsig könnte man sagen: mit Schleim, der von Lebewesen gebildet wird.


Die Oberflächenstruktur des mit Biofilm angemischten Mörtels (links) erzeugt einen Lotuseffekt: Wassertropfen haben deutlich weniger Kontakt zur Oberfläche als auf unbehandeltem Mörtel (rechts).

Stefan Grumbein / TUM

Dazu zählen zum Beispiel bakterielle Biofilme wie Zahnbelag oder die schleimige, schwarze Schicht in Abflussrohren. „Biofilme gelten im Allgemeinen als schädlich und störend, das ist etwas, was man eher loswerden will“, sagt Oliver Lieleg. „Für mich war es deshalb reizvoll, sie für eine sinnvolle Anwendung nutzbar zu machen.“

Inspiration im Gespräch

Im Gespräch mit einem Kollegen an der TUM kam Lieleg die Idee, Biofilme zu nutzen, um die Eigenschaften von Baumaterial zu verändern. Prof. Christian Große ist Inhaber des Lehrstuhls für Zerstörungsfreie Werkstoffprüfung und forscht unter Anderem zu selbstheilendem Beton, der Risse selbständig schließt. Einer Variante dieses Betons sind Bakterien beigemischt, die durch eintretende Feuchtigkeit aktiviert werden und die Risse durch kalkhaltige Stoffwechselprodukte wieder schließen.

Für sein eigenes Projekt nahm sich Lieleg anstelle von Beton Mörtel vor. Statt Risse im Nachhinein zu flicken, will er jedoch verhindern, dass Feuchtigkeit überhaupt erst eindringt und für Probleme sorgt indem sich etwa Schimmel bildet oder gefrierendes Wasser kleine Spalten weiter aufsprengt. Dafür macht er sich zunutze, dass einige Filme, die von Bakterien gebildet werden, stark wasserabweisend sind. Im Fachmagazin „Advanced Materials“ schildern Lieleg und seine Kolleginnen und Kollegen, wie man einen sogenannten Hybridmörtel herstellen kann, der besonders resistent gegen Feuchtigkeit ist.

Bodenbakterium als Filmlieferant

Wichtigste Zutat des neuen Materials ist der Biofilm eines Bakteriums namens Bacillus subtilis. „Bacillus subtilis lebt normalerweise in Böden und ist sehr weit verbreitet“, erläutert Oliver Lieleg. „Wir haben für unsere Experimente einen einfachen Laborstamm genutzt, der sich gut vermehren lässt, viel Biomasse bildet und völlig ungefährlich ist.“ Im Labor züchtete das Team um Lieleg den Bakterienfilm auf Standard-Nährböden. Den feuchten Biofilm mischten sie dann unter das Mörtelpulver.

Auf dem fertigen Hybridmörtel blieb Wasser deutlich weniger haften, als auf unbehandeltem. Um diese Eigenschaft einer Oberfläche zu messen, bestimmen Wissenschaftler den Kontaktwinkel, den ein Wassertropfen zur Oberfläche hat. Je steiler der Winkel, desto kugelförmiger ist ein Tropfen und desto weniger sickert er in das jeweilige Material ein. Während dieser Winkel bei Tropfen auf unbehandeltem Mörtel 30 Grad oder weniger beträgt, ist er bei Tropfen auf dem Hybridmörtel gut dreimal so steil. Einen ähnlichen Kontaktwinkel haben Wassertropfen auf Polytetrafluorethylen, besser bekannt unter dem Markennamen Teflon.

Nanostrukturen im Mörtel

Der Grund für die Eigenschaften des Hybridmörtels ist nur mit dem Elektronen-Mikroskop sichtbar: Überall an der Oberfläche befinden sich winzige kristalline Stacheln. Dadurch kommt es zum sogenannten Lotuseffekt, der beispielsweise auch auf den Blättern der namensgebenden Pflanze auftritt. Die kleinen gleichmäßigen Strukturen auf der Oberfläche sorgen dafür, dass nur ein kleiner Teil der Oberfläche eines Wassertropfens die eigentliche Oberfläche des Blattes berührt.

Dadurch wird die Oberflächenspannung des Tropfens stärker als die Kräfte, die ihn am Blatt haften lassen, er wird kugelförmig und perlt ab. Ein Schnitt durch den Hybridmörtel zeigt, dass die kristallinen Stacheln auch innerhalb des Mörtels gleichmäßig verteilt sind. Dadurch werden Kapillarkräfte verringert, die normalerweise dafür sorgen, dass Wasser in dem Mörtel emporsteigt, wenn ein Teil in Flüssigkeit steht.

Ähnliche Stacheln kommen zwar auch auf unbehandeltem Mörtel vor, sie sind dort aber länger und nur an einzelnen Stellen zu finden. Ein Lotuseffekt kann nicht entstehen. Erst der beigemischte Biofilm, nehmen die Wissenschaftler an, stimuliert überall im Volumen des Hybridmaterials ein Kristallwachstum, das zudem besonders gleichmäßig ist.

Um herauszufinden, ob der Hybridmörtel widerstandsfähig genug ist, um tatsächlich im Bau verwendet zu werden, wird er derzeit am Lehrstuhl von Christian Große geprüft. „Wenn der Mörtel tatsächlich geeignet ist, sehe ich wenig Probleme für Firmen, ihn im großen Stil herzustellen“, sagt Oliver Lieleg. Sowohl der verwendete Bakterienstamm als auch die Nährböden seien etabliert und relativ kostengünstig. „In unseren Experimenten haben wir außerdem herausgefunden, dass man auch gefriergetrockneten Biofilm nutzen kann. In Pulverform lässt sich das biologische Material sehr viel leichter lagern, transportieren und dosieren.“ In Zukunft wollen die Wissenschaftlerinnen und Wissenschaftler prüfen, ob sich auch Beton mithilfe des Biofilms gegen Wasser schützen lässt.

Kontakt:

Prof. Dr. Oliver Lieleg
Professur für Biomechanik
Technische Universität München
Fakultät für Maschinenwesen und Zentralinstitut für Medizintechnik
Telefon: +49 (0)89-289-10952
E-Mail: oliver.lieleg@tum.de

Publikation:

S. Grumbein, D. Minev, M. Tallawi, K. Boettcher, F. Prade, F. Pfeiffer, C.U. Große and O. Lieleg, Hydrophobic Properties of Biofilm-Enriched Hybrid Mortar, Advanced Materials, DOI: 10.1002/adma.201602123 (2016)

Dr. Ulrich Marsch | Technische Universität München
Weitere Informationen:
http://www.tum.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Schwarzer Stickstoff: Bayreuther Forscher entdecken neues Hochdruck-Material und lösen ein Rätsel des Periodensystems
29.05.2020 | Universität Bayreuth

nachricht Ein wichtiger Schritt zum Neuromorphen Rechnen: richtungsweisende Arbeit aus Dresden
28.05.2020 | Technische Universität Dresden

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neuartiges Covid-19-Schnelltestverfahren auf Basis innovativer DNA-Polymerasen entwickelt

Eine Forschungskooperation der Universität Konstanz unter Federführung von Professor Dr. Christof Hauck (Fachbereich Biologie) mit Beteiligung des Klinikum Konstanz, eines Konstanzer Diagnostiklabors und des Konstanzer Unternehmens myPOLS Biotec, einer Ausgründung aus der Arbeitsgruppe für Organische Chemie / Zelluläre Chemie der Universität Konstanz, hat ein neuartiges Covid-19-Schnelltestverfahren entwickelt. Dieser Test ermöglicht es, Ergebnisse in der Hälfte der Zeit zu ermitteln – im Vergleich zur klassischen Polymerase-Ketten-Reaktion (PCR).

Die frühe Identifikation von Patienten, die mit dem neuartigen Coronavirus (SARS-CoV-2) infiziert sind, ist zentrale Voraussetzung bei der globalen Bewältigung...

Im Focus: Textilherstellung für Weltraumantennen startet in die Industrialisierungsphase

Im Rahmen des EU-Projekts LEA (Large European Antenna) hat das Fraunhofer-Anwendungszentrum für Textile Faserkeramiken TFK in Münchberg gemeinsam mit den Unternehmen HPS GmbH und Iprotex GmbH & Co. KG ein reflektierendes Metallnetz für Weltraumantennen entwickelt, das ab August 2020 in die Produktion gehen wird.

Beim Stichwort Raumfahrt werden zunächst Assoziationen zu Forschungen auf Mond und Mars sowie zur Beobachtung ferner Galaxien geweckt. Für unseren Alltag sind...

Im Focus: Biotechnologie: Enzym setzt durch Licht neuartige Reaktion in Gang

In lebenden Zellen treiben Enzyme biochemische Stoffwechselprozesse an. Auch in der Biotechnologie sind sie als Katalysatoren gefragt, um zum Beispiel chemische Produkte wie Arzneimittel herzustellen. Forscher haben nun ein Enzym identifiziert, das durch die Beleuchtung mit blauem Licht katalytisch aktiv wird und eine Reaktion in Gang setzt, die in der Enzymatik bisher unbekannt war. Die Studie ist in „Nature Communications“ erschienen.

Enzyme – in jeder lebenden Zelle sind sie die zentralen Antreiber für biochemische Stoffwechselprozesse und machen dort Reaktionen möglich. Genau diese...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: Innovative Sensornetze aus Satelliten

In Würzburg werden vier Kleinst-Satelliten auf ihren Start vorbereitet. Sie sollen sich in einer Formation bewegen und weltweit erstmals ihre dreidimensionale Anordnung im Orbit selbstständig kontrollieren.

Wenn ein Gegenstand wie der Planet Erde komplett ohne tote Winkel erfasst werden soll, muss man ihn aus verschiedenen Richtungen ansehen und die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Gebäudewärme mit "grünem" Wasserstoff oder "grünem" Strom?

26.05.2020 | Veranstaltungen

Dresden Nexus Conference 2020 - Gleicher Termin, virtuelles Format, Anmeldung geöffnet

19.05.2020 | Veranstaltungen

Urban Transport Conference 2020 in digitaler Form

18.05.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Wie sich Nervenzellen zum Abruf einer Erinnerung gezielt reaktivieren lassen

29.05.2020 | Biowissenschaften Chemie

Wald im Wandel

29.05.2020 | Agrar- Forstwissenschaften

Schwarzer Stickstoff: Bayreuther Forscher entdecken neues Hochdruck-Material und lösen ein Rätsel des Periodensystems

29.05.2020 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics