Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Von japanischer Korbflechtkunst zu Nanotechnologie mit Ionenstrahlen

01.08.2019

Die Eigenschaften von Hochtemperatur-Supraleitern können durch künstliche Defekte gezielt verändert werden. Einem internationalen Forschungsteam um den Physiker Wolfgang Lang an der Universität Wien ist es nun gelungen, die weltweit dichtesten komplexen Nanogitter zur Verankerung von magnetischen Flussquanten, den Fluxonen, herzustellen. Dies wurde durch Bestrahlung des Supraleiters mit einem Helium-Ionen-Mikroskop an der Universität Tübingen erreicht, eine Technologie, die erst seit Kurzem verfügbar ist. Inspiriert wurden die ForscherInnen hierbei von einer traditionellen japanischen Korbflechtkunst. Die Ergebnisse wurden kürzlich im Journal "ACS Applied Nanomaterials" publiziert.

Supraleiter können elektrischen Strom völlig verlustfrei transportieren, wenn sie unter eine gewisse kritische Temperatur gekühlt werden. Allerdings sind reine Supraleiter für die meisten technischen Anwendungen gar nicht geeignet, sondern erst nach kontrollierter Einführung von Defekten. Meistens sind diese zufällig verteilt, jedoch gewinnt die gezielte periodische Anordnung solcher Defekte immer größere Bedeutung.


Das klassische japanische Korbflechtmuster diente als Inspiration für eine Anordnung von Fluxonen-Fallen, die mit einem Helium-Ionen-Mikroskop in einem Hochtemperatur-Supraleiter hergestellt wurden.

© Bernd Aichner, Universität Wien

Fallen und Käfige für magnetische Quantenobjekte
In einen Supraleiter kann ein Magnetfeld nur in quantisierten Portionen, den sogenannten Fluxonen, eindringen. Zerstört man nun die Supraleitung in sehr kleinen Bereichen, werden die Fluxonen an genau diesen Stellen verankert. Mit periodischen Anordnungen derartiger Defekte kann man zweidimensionale "Fluxonen-Kristalle" erzeugen, die ein Modellsystem für zahlreiche interessante Untersuchungen darstellen.

Die Defekte dienen hierbei als Fallen für die Fluxonen, und durch Variation von gut zugänglichen Parametern können zahlreiche Effekte untersucht werden. "Allerdings ist es hierfür notwendig, sehr dichte Anordnungen zu realisieren, damit die Fluxonen untereinander wechselwirken können – am besten mit Abständen unter 100 Nanometer, also tausendmal kleiner als der Durchmesser eines Haares", erklärt Bernd Aichner von der Universität Wien.

Besonders im Interesse der ForscherInnen liegen komplexe periodische Anordnungen, wie etwa das von der aktuellen Studie untersuchte quasi-Kagomé Defektgitter, das von einer traditionellen japanischen Korbflechtkunst inspiriert wurde. Die Bambusstreifen eines solchen Kagomé-Musters werden hierbei durch eine Kette von Defekten mit 70 Nanometer Abstand ersetzt.

Die Besonderheit dieser künstlichen Nanostruktur ist, dass nicht nur jeweils ein Fluxon pro Defekt verankert werden kann, sondern sich annähernd kreisförmige Fluxonenketten ausbilden, die ihrerseits ein noch freies Fluxon in ihrer Mitte gefangen halten. Derartige Fluxonenkäfige beruhen auf der wechselseitigen Abstoßung von Fluxonen und können durch Änderung des äußeren Magnetfelds geöffnet und geschlossen werden. Sie gelten daher als ein vielversprechendes Konzept zur Realisierung von verlustarmen und schnellen supraleitenden Schaltkreisen mit Fluxonen.

Nanostrukturierung mit dem Helium-Ionen-Mikroskop

Ermöglicht wurden diese Forschungsergebnisse durch ein neuartiges Gerät an der Universität Tübingen – das Helium-Ionen-Mikroskop. Dieses hat zwar ein ähnliches Funktionsprinzip wie das Rasterelektronenmikroskop, besitzt aber wegen der viel kleineren Wellenlänge der Helium-Ionen eine zuvor unerreichte Auflösung und Schärfentiefe.

"Mit einem Helium-Ionen-Mikroskop lassen sich die supraleitenden Eigenschaften gezielt verändern, ohne hierbei das Material abzutragen oder zu zerstören. So können wir Fluxonengitter in Hochtemperatur-Supraleitern mit einer Dichte erzeugen, die weltweit einzigartig ist", betont Dieter Koelle von der Eberhard-Karls-Universität in Tübingen. Die WissenschafterInnen planen nun, die Methode für noch kleinere Strukturen weiter zu entwickeln und damit verschiedene theoretisch vorgeschlagene Konzepte für Fluxonen-Schaltkreise zu erproben.

Publikation in ACS Applied Nanomaterials:
"Ultradense Tailored Vortex Pinning Arrays in Superconducting YBa2Cu3O7 Films Created by Focused He Ion-Beam Irradiation for Fluxonics Applications": Bernd Aichner, Benedikt Müller, Max Karrer, Vyacheslav R. Misko, Fabienne Limberger, Kristijan L. Mletschnig, Meirzhan Dosmailov, Johannes D. Pedarnig, Franco Nori, Reinhold Kleiner, Dieter Koelle, and Wolfgang Lang, ACS Applied Nanomaterials (2019)
DOI: 10.1021/acsanm.9b01006

Wissenschaftliche Ansprechpartner:

ao. Univ.-Prof. Dr. Wolfgang Lang
Electronic Properties of Materials, Fakultät für Physik
Universität Wien
1090 - Wien, Boltzmanngasse 5
+43-1-4277-514 24
+43-664-602 77-514 24
wolfgang.lang@univie.ac.at

Originalpublikation:

https://pubs.acs.org/doi/abs/10.1021/acsanm.9b01006

Stephan Brodicky | Universität Wien
Weitere Informationen:
http://www.univie.ac.at/

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Innovative Materialien und Bauelemente für die Terahertz-Elektronik
02.04.2020 | Forschungsverbund Berlin e.V.

nachricht Wie man Schmutz einfach entfernt
02.04.2020 | Max-Planck-Institut für Polymerforschung

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenimaging: Unsichtbares sichtbar machen

Verschränkte Lichtteilchen lassen sich nutzen, um Bildgebungs- und Messverfahren zu verbessern. Ein Forscherteam am Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF in Jena hat eine Quantenimaging-Lösung entwickelt, die in extremen Spektralbereichen und mit weniger Licht genaueste Einblicke in Gewebeproben ermöglichen kann.

Optische Analyseverfahren wie Mikroskopie und Spektroskopie sind in sichtbaren Wellenlängenbereichen schon äußerst effizient. Doch im Infrarot- oder...

Im Focus: Sensationsfund: Spuren eines Regenwaldes in der Westantarktis

90 Millionen Jahre alter Waldboden belegt unerwartet warmes Südpol-Klima in der Kreidezeit

Ein internationales Forscherteam unter Leitung von Geowissenschaftlern des Alfred-Wegener-Institutes, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI)...

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

Im Focus: Blockierung des Eisentransports könnte Tuberkulose stoppen

Tuberkulose-Bakterien brauchen Eisen zum Überleben. Wird der Eisentransport in den Bakterien gestoppt, so kann sich der Tuberkulose-Erreger nicht weiter vermehren. Nun haben Forscher der Universität Zürich die Struktur des Transportproteins ermittelt, das für die Eisenzufuhr zuständig ist. Dies eröffnet Möglichkeiten zur Entwicklung neuer Medikamente.

Einer der verheerendsten Erreger, der sich im Inneren menschlicher Zellen vermehren kann, ist Mycobacterium tuberculosis – der Bazillus, der Tuberkulose...

Im Focus: Blocking the Iron Transport Could Stop Tuberculosis

The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply. When the iron transport into the bacteria is inhibited, the pathogen can no longer grow. This opens novel ways to develop targeted tuberculosis drugs.

One of the most devastating pathogens that lives inside human cells is Mycobacterium tuberculosis, the bacillus that causes tuberculosis. According to the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

13. »AKL – International Laser Technology Congress«: 4.–6. Mai 2022 in Aachen – Lasertechnik Live bereits früher!

02.04.2020 | Veranstaltungen

Europäischer Rheumatologenkongress EULAR 2020 wird zum Online-Kongress

30.03.2020 | Veranstaltungen

“4th Hybrid Materials and Structures 2020” findet web-basiert statt

26.03.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Quantenimaging: Unsichtbares sichtbar machen

02.04.2020 | Physik Astronomie

Innovative Materialien und Bauelemente für die Terahertz-Elektronik

02.04.2020 | Materialwissenschaften

Besser gewappnet bei Überflutungen in der Stadt

02.04.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics