Vom Zellstoff zum Formteil – Fraunhofer entwickelt neue Technologie für faserverstärkte Kunststoffe

Ein erstes Muster des am Fraunhofer PAZ entwickelten Filterstopfwerks. Fraunhofer PAZ

Faserverstärkte Kunststoffe werden beispielsweise für Instrumententafeln oder Seitenverkleidungen im Auto, in Gehäusen von Elektrogeräten oder für Gartenmöbel genutzt. Die thermoplastischen Kunststoffe wie Polypropylen (PP), Polyethylen (PE) oder Polyamid (PA) werden dabei mit Fasern verstärkt, um ganz spezifische Materialeigenschaften zu erzielen. Der Faseranteil am Werkstoff kann bis zu 40 Prozent betragen.

Zellstofffasern wären dafür gut geeignet: Sie sind ein nachwachsender Rohstoff und günstiger als andere Materialien wie Glas. Zudem haben Untersuchungen am Fraunhofer PAZ gezeigt, dass sie im Vergleich zu anderen Naturfasern sehr gute mechanische Kennwerte für die Kunststoff-Verstärkung möglich machen: Setzt man sehr gut vereinzelte Zellstofffasern mit großer Faserlänge in der Spritzgießcompoundierung ein, sind die entstehenden Materialien genauso belastbar wie Kurzglasfaser-Compounds – bei erheblichen Material- und Kostenvorteilen.

Um Zellstofffasern auf diese Weise nutzen zu können, stellen sich allerdings große Herausforderungen an den Prozessablauf: Aus gängigen Lieferformaten wie Pappe müssen einzelne Fasern in ausreichender Länge gewonnen werden, die zudem dosierbar und rieselfähig sind, um beim Einbringen in die Kunststoffschmelze den Fasergehalt und die Faserverteilung genau bestimmen zu können. Ein solches Verfahren ist bisher nicht verfügbar.

Das Fraunhofer PAZ möchte genau diese Technologie entwickeln und arbeitet dazu in einem neuen Projekt mit der Kurt Seume Spezialmaschinenbau GmbH, Ematik GmbH, Exipnos GmbH und Dornburger Kunststoff-Technik GmbH zusammen. Ziel des Projekts, das innerhalb des Programms »Wachstumskern Potenzial« für zwei Jahre vom Bundesministerium für Bildung und Forschnung (BMBF) gefördert wird, ist die Entwicklung einer Technologieplattform zur effizienten Herstellung hochwertiger Zellstoff-Compounds ausgehend von kommerziell verfügbaren Zellstoff-Lieferformen sowie deren Verarbeitung zu Formteilen mittels konventionellem Spritzguss sowie Spritzgießcompoundierung.

»Durch das Know-how der beteiligten Partner können wir Zellstoff- und Kunststoff-Technologie in einer einzigartigen, durchgehenden Lösung miteinander verbinden. So machen wir Faserzellstoff für die Kunststoff-Verstärkung industriell nutzbar. Denn die Inline-Verarbeitung, ausgehend von Pappe und ohne weitere Zwischenprodukte, die die Eigenschaften verschlechtern und den Preis erhöhen würden, ist die effizienteste Variante der Verarbeitung«, sagt Dr. Michael Busch, Leiter des Projekts am Fraunhofer PAZ.

Schlüssel dabei ist ein am Fraunhofer PAZ entwickeltes und zum Patent angemeldetes Filterstopfwerk: Die Pappe als Ausgangsmaterial wird zunächst gemahlen, sodass einzelne Zellstofffasern in ausreichender Länge entstehen. Diese werden in einem Faser-Luft-Strom abtransportiert. Das Filterstopfwerk trennt dann die Fasern von der Luft und befördert sie in den Compoundier-Extruder, wo die Weiterverarbeitung stattfindet.

Projektleiter Busch sieht vielfältige Anwendungsmöglichkeiten für hochwertige Faserzellstoff-Compounds und Formteile: »Einerseits wird eine signifikante Vereinfachung aufwändiger konstruktiver Lösungen möglich. Andererseits könnte man glasfaserverstärkte Kunststoffe durch zellfaserverstärkte, die günstiger und ökologischer sind, teilweise ersetzen«, sagt er. Auch die Fertigung von Masterbatches, bei denen der Faseranteil mehr als 50 Prozent beträgt, strebt das Konsortium an.

Über das Fraunhofer PAZ
Seit 2005 werden im Fraunhofer-Pilotanlagenzentrum für Polymersynthese und – verarbeitung PAZ in Schkopau neue Polymer-Produkte und innovative Technologien entlang der gesamten Wertschöpfungskette entwickelt – vom Monomer über die Polymersynthese und Kunststoffverarbeitung im Pilotmaßstab bis hin zum geprüften Bauteil nach Maß. In dieser Kombination und Größenordnung ist das Fraunhofer PAZ einmalig in Europa. Im Auftrag von Kunden etwa aus der Kunststoff- oder Automobilindustrie werden auf einer Technikums- und Laborfläche von derzeit rund 1700 Quadratmetern unterschiedlichste Polymersynthese- und Verarbeitungsverfahren maßgeschneidert bis in den industrienahen Maßstab umgesetzt.

Das Fraunhofer PAZ ist eine gemeinsame Initiative der Fraunhofer-Institute für Angewandte Polymerforschung IAP in Potsdam-Golm und für Mikrostruktur von Werkstoffen und Systemen IMWS in Halle. Unter der Leitung von Prof. Michael Bartke (IAP) bündeln beide Einrichtungen ihre Kompetenzen in der Polymersynthese (IAP) und Polymerverarbeitung (IMWS) in einzigartiger Weise. Diese Zusammenarbeit, die technischen Möglichkeiten im Pilotmaßstab sowie die hohe Flexibilität der Anlagen sind Alleinstellungsmerkmale am FuE-Markt.

Das Pilotanlagenzentrum ist als Mieter in das mitz II integriert. Der ebenfalls 2005 eröffnete Erweiterungsbau des Merseburger Innovations- und Technologiezentrums mitz GmbH, wurde zu 90 Prozent durch das Land Sachsen-Anhalt / EU finanziert. Die Mittel für die apparative Erstausstattung und die Anlagen des PAZ in Höhe von rund 19 Millionen Euro stammen zu 84 Prozent aus dem Europäischen Fonds für regionale Entwicklung EFRE.


http://www.imws.fraunhofer.de/de/kontakt/presse/pressemitteilungen/Zellstoff-Com…
http://www.polymer-pilotanlagen.de


Media Contact

Clemens Homann Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer