Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Virtueller Lärm

05.03.2019

Eisenbahnlärm stört. Vor allem in der Nähe von Wohngebieten sorgen Züge regelmässig für schlaflose Nächte. Umso wichtiger ist es, Züge und Schienen so zu optimieren, dass Geräusche gedämmt werden. Empa-Forschende haben eine Computersimulation entwickelt, die realitätsgetreu aufzeigt, wie Bahnlärm entsteht und welche technischen Massnahmen zielführend sind, ihn zu verhindern.

Der Zug rauscht heran, der Lärmpegel steigt, es dröhnt unangenehm in den Ohren, wenn die Waggons vorbeirattern. Ein paar Sekunden später ist der Spuk vorbei, die Lautstärke nimmt ab, und die Wagons verschwinden am Horizont. Was auf den ersten Blick wirkt wie die gewöhnliche Aufnahme eines vorbeifahrenden Zuges, ist in Wirklichkeit weit mehr.


Die Simulation läuft auch «tragbar» mittels Virtual Reality inklusive Kopfhörer. Bild: Empa

Weder die Geräusche, die man durch Lautsprecher oder Kopfhörer hört, noch die Bilder, die man sieht, sind echt: Alles entstand im Rahmen einer Simulation am Computer.

Lärm: Ein Ensemble aus über hundert Geräuschquellen

«Lärm besteht aus verschiedenen Bestandteilen», erklärt Reto Pieren von der Empa-Abteilung «Akustik und Lärmminderung», verantwortlich für die Programmierung der Simulation, die ein Team von Empa-Forschern in einem Horizon2020-Projekt der EU entwickelte.

«Die Räder, die Schienen, die Lüftung, der Motor – alles erzeugt Geräusche und verursacht als Ganzes dann die Lärmemission des Zuges.»

In anderen Worten: Pieren hat für die über 100 Geräuschquellen eines fahrenden Zuges einzelne Algorithmen entwickelt. Das ermöglicht es, den Zug als Ganzes «hörbar» zu machen oder aber nur einzelne Komponenten.

Nebst den diversen Geräuschquellen eines fahrenden Zuges integriert er ausserdem Umwelteinflüsse in seine Berechnungen. Dazu gehören Lärmschutzwände, Fahrgeschwindigkeit, Zustand der Gleise, Aussentemperatur und sogar die Beschaffenheit des Bodens.

Ziel der Simulation ist es, nicht nur Optimierungspotenzial bestehender Zugkompositionen aufzuzeigen, sondern in Zukunft auch Voraussagen treffen zu können, wie beispielswiese neue Räder oder Bauteile den Lärm einer Bahnlinie verändern würden.

Erschaffen am Computer

Die Simulation der Empa ist einzigartig, denn bisherige Programme verwenden echte Tonaufnahmen. Pieren jedoch hat die einzelnen Geräusche am Computer hergestellt. Dabei wird für jede Zugkomponente unter Berücksichtigung der physikalischen Parameter das entsprechende akustische Signal berechnet.

Physikalische Parameter heisst in diesem Fall Eigenschaften wie die Oberflächenbeschaffenheit und das Material der Gleise und der einzelnen Räder. Diese Grundparameter stammen dabei aus eigenen Messungen, Messungen von Fahrzeugherstellern und Simulationsrechnungen und werden in die Simulation eingespeist. Aus diesen Daten berechnet der Algorithmus den abgestrahlten Schalldruck, aus dem wiederum das Geräusch bei einem bestimmten Zuhörerpunkt simuliert wird.

Doch es geht noch komplexer: Beim Rollgeräusch beispielsweise wird das Bremssystem der Wagen mit einberechnet. «Dahinter verbergen sich Datensätze, die die Oberflächenmikrostruktur der Räder beschreiben. So wird für jedes Rad eine individuelle Oberflächenstruktur berechnet», erklärt Pieren.

Diese Oberflächenstruktur ist massgeblich an der entstehenden Reibung mit den Geleisen und somit an der Schall- respektive Lärmentwicklung beteiligt. Je weniger Unebenheiten die Oberfläche der Räder und der Gleise aufweisen, umso leiser das Fahrgeräusch.
Der Schall macht es aus

Ein vorbeifahrender Zug verursacht Lärm, so viel ist klar. Wie ein Anwohner diesen Lärm allerdings wahrnimmt, hängt massgeblich von der lokalen Umgebung und der Schallausbreitung ab. Schall erfährt bei der Ausbreitung diverse Veränderungen. Er wird durch Luft absorbiert, was dazu führt, dass hohe Frequenzen stärker gedämpft werden als tiefe.

Ähnliches passiert bei einer Lärmschutzwand: Hohe Frequenzen sind hinter der Wand tatsächlich weniger laut, tiefe Töne werden jedoch über die Wand gebeugt. Diese zentralen Faktoren können in der Simulation ebenfalls nachgestellt werden, ebenso wie der Standort des Zuhörers – von dem die eigentliche akustische Wahrnehmung des Lärms abhängt.

Den künstlich erzeugten Lärm hat Pieren mit Probanden in einem Hörexperiment überprüft. Erfreulicherweise zeigte sich, dass die Probanden die Simulationen und die künstlich generierten Geräusche als sehr plausibel einstuften. Mit der Simulation lassen sich also Auswirkungen von unterschiedlichen Massnahmen «auralisieren», also hörbar machen. Beispielsweise lässt Pieren die Simulation laufen, platziert im Anschluss eine Schallschutzwand und lässt erneut einen Zug vorbeifahren. «Wenn wir sagen, eine Massnahme reduziert den Geräuschpegel um drei Dezibel, können sich die wenigsten vorstellen, was das bedeutet. Wenn ich diese drei Dezibel im direkten Vergleich aber hörbar mache, ist der Effekt sofort klar.»

Die Simulation funktioniert nicht nur im Labor oder mit einem Virtual-Reality-Set. Auch Videos auf YouTube zeigen den Vergleich und machen deutlich, was die Simulation leisten kann. Zukünftig soll sie helfen, wichtige Entscheidungen bezüglich Bau und Ausbau von Bahnlinien und Zügen zu unterstützen. Davon profitieren langfristig Bahnbetreiber, Planer und vor allem die Anwohner.

Wissenschaftliche Ansprechpartner:

Dr. Reto Pieren
Akustik / Lärmminderung
Tel. +41 58 765 60 31
reto.pieren@empa.ch

Dr. Jean-Marc Wunderli
Akustik / Lärmminderung
Tel. +41 58 765 47 48
Jean-Marc.Wunderli@empa.ch

Originalpublikation:

https://www.sciencedirect.com/science/article/pii/S0003682X17300361

Weitere Informationen:

https://www.empa.ch/web/s604/zuglaerm-simulation

Redaktion Empa | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Weitere Berichte zu: Akustik Empa Geräuschquellen Gleise Lärm Lärmminderung Simulation

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Hitzeschilde für sparsame Flugzeuge
18.09.2019 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht Turbine aus dem 3D-Drucker
18.09.2019 | Fraunhofer-Gesellschaft

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Nervenzellen feuern Hirntumorzellen zum Wachstum an

Heidelberger Wissenschaftler und Ärzte beschreiben aktuell im Fachjournal „Nature“, wie Nervenzellen des Gehirns mit aggressiven Glioblastomen in Verbindung treten und so das Tumorwachstum fördern / Mechanismus der Tumor-Aktivierung liefert Ansatzpunkte für klinische Studien

Nervenzellen geben ihre Signale über Synapsen – feine Zellausläufer mit Kontaktknöpfchen, die der nächsten Nervenzelle aufliegen – untereinander weiter....

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour für die zeitaufgelöste Kristallographie

Ein Forschungsteam vom Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD), der Universität Hamburg und dem European Molecular Biology Laboratory (EMBL) hat eine neue Methode entwickelt, um Biomoleküle bei der Arbeit zu beobachten. Sie macht es bedeutend einfacher, enzymatische Reaktionen auszulösen, da hierzu ein Cocktail aus kleinen Flüssigkeitsmengen und Proteinkristallen angewandt wird. Ab dem Zeitpunkt des Mischens werden die Proteinstrukturen in definierten Abständen bestimmt. Mit der dadurch entstehenden Zeitraffersequenz können nun die Bewegungen der biologischen Moleküle abgebildet werden.

Die Funktionen von Biomolekülen werden nicht nur durch ihre molekularen Strukturen, sondern auch durch deren Veränderungen bestimmt. Mittels der...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

92. Neurologie-Kongress: Mehr als 6500 Neurologen in Stuttgart erwartet

20.09.2019 | Veranstaltungen

Frische Ideen zur Mobilität von morgen

20.09.2019 | Veranstaltungen

Thermodynamik – Energien der Zukunft

19.09.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ferroelektrizität verbessert Perowskit-Solarzellen

20.09.2019 | Energie und Elektrotechnik

HD-Mikroskopie in Millisekunden

20.09.2019 | Biowissenschaften Chemie

Kinobilder aus lebenden Zellen: Forscherteam aus Jena und Bielefeld 
verbessert superauflösende Mikroskopie

20.09.2019 | Medizintechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics