Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vielversprechendes Material für Lithium-Ionen-Akkus

06.06.2013
Neue Gerüststruktur aus Bor und Silicium könnte den Weg zu höheren Kapazitäten weisen

Laptops könnten länger arbeiten und Elektroautos weiter fahren wenn es gelänge, die Kapazität ihrer Lithium-Ionen-Akkus weiter zu steigern. Einen entscheidenden Einfluss darauf hat ihr Elektrodenmaterial.


Lithium-Borsilicid-Gerüststruktur - Bild: T. Fässler/TUM

Bisher besteht die negative Elektrode meist aus Graphit, dessen Schichten eine begrenzte Menge an Lithium einlagern können. Wissenschaftler der Technischen Universität München (TUM) haben nun ein Material aus Bor und Silizium entwickelt, das den Weg zu Systemen mit höheren Speicherkapazitäten weisen könnte.

Lädt man einen Lithium-Ionen-Akku, entstehen Lithium-Atome. Die Graphitschichten der negativen Elektrode nehmen sie auf. Doch die Kapazität des Graphits ist begrenzt: Auf sechs Kohlenstoff-Atome kommt maximal ein Lithium-Atom. Silicium könnte bis zu zehnmal mehr Lithium aufnehmen. Aber leider dehnt es sich dabei stark aus, was bei der Anwendung als Akku zu bisher nicht gelösten Problemen führt.

Auf der Suche nach einer Alternative zu reinem Silicium gelang es Wissenschaftlern der TU München nun, aus Bor und Silicium eine völlig neue Gerüststruktur aufzubauen, die sich als Elektrodenmaterial eignen könnte. Ähnlich wie die Kohlenstoff-Atome im Diamanten sind die Bor- und Silicium-Atome im neuen Lithium-Borsilicid (LiBSi2) tetraederförmig miteinander verbunden. Doch anders als der Diamant bilden sie zusätzlich Kanäle aus. „Offene Strukturen mit Kanälen bieten prinzipiell die Möglichkeit Lithium ein- und wieder auszulagern“, sagt Thomas Fässler, Professor am Lehrstuhl für Anorganische Chemie der TU München. „Das ist eine wichtige Voraussetzung zur Anwendung als Material für die Anode in Lithium-Ionen-Akkus.“

Hochdrucksynthese

Im Hochdrucklabor des Departments of Chemistry and Biochemistry der Arizona State University gelang es den Wissenschaftlern, die Ausgangsstoffe Lithiumborid und Silicium zur Reaktion zu bringen. Bei einem Druck von 100.000 Atmosphären und Temperaturen um 900 ° Celsius bildete sich das gewünschte Lithium-Borsilicid. „Es ist eine Menge Fingerspitzengefühl und viel Erfahrung notwendig, um das richtige Verhältnis der Grundmaterialen und die richtigen Parameter herauszufinden“, erklärt Thomas Fässler.

Lithium-Borsilicid ist gegenüber Luft und Feuchtigkeit stabil und widersteht auch Temperaturen bis zu 800° Celsius. Als nächstes wollen Thomas Fässler und sein Doktorand Michael Zeilinger näher untersuchen, wie viele Lithium-Atome das Material aufnehmen kann und ob es sich beim Ladevorgang ausdehnt. Aufgrund seiner Kristallstruktur etwa könnte das Material sehr hart sein, was es auch als Diamant-Ersatz interessant machen würde.

Da die Struktur des Lithium-Borsilicids bisher einzigartig ist, durften Fässler und Zeilinger ihrem neuen Gerüst einen Namen geben. Zu Ehren ihrer Universität entschieden sie sich für den Namen „tum“.

Weitere Kooperationspartner des Projekts waren die Fakultät für Physik der Universität Augsburg und das Department of Materials and Environmental Chemistry der Universität Stockholm. Die Arbeit wurde unterstützt mit Mitteln der TUM Graduate School, des Fonds der Chemischen Industrie, der Deutschen Forschungsgemeinschaft, dem Swedish Research Council und der National Science Foundation, USA.


Publikationen:

Michael Zeilinger, Leo van Wüllen, Daryn Benson, Verina F. Kranak, Sumit Konar, Thomas F. Fässler, and Ulrich Häussermann, LiBSi2: A Tetrahedral Semiconductor Framework from Boron and Silicon Atoms Bearing Lithium Atoms in the Channels, Angewandte Chemie 2013, 52, online: DOI:10.1002/ange.201301540.
Link: http://onlinelibrary.wiley.com/doi/10.1002/ange.201301540/abstract

Michael Zeilinger, Daryn Benson, Ulrich Häussermann, Thomas F. Fässler: Single crystal growth and thermodynamic stability of Li17Si4, Chemistry of Materials 2013, 25, 1960–1967.

Kontakt:

Prof. Dr. Thomas F. Fässler
Technische Universität München
Lehrstuhl für Anorganische Chemie mit Schwerpunkt Neue Materialien
Lichtenbergstr. 4, 85747 Garching, Germany
Tel. +49 89 289 13131
E-Mail: thomas.faessler@lrz.tum.de
Internet: http://www.ch.tum.de/faessler/index.htm


Die Technische Universität München (TUM) ist mit rund 500 Professorinnen und Professoren, 9.000 Mitarbeiterinnen und Mitarbeitern und 32.000 Studierenden eine der führenden technischen Universitäten Europas. Ihre Schwerpunktfelder sind die Ingenieurwissenschaften, Naturwissenschaften, Lebenswissenschaften, Medizin und Wirtschaftswissenschaften. Nach zahlreichen Auszeichnungen wurde sie 2006 und 2012 vom Wissenschaftsrat und der Deutschen Forschungsgemeinschaft zur Exzellenzuniversität gewählt. In nationalen und internationalen Vergleichsstudien rangiert die TUM jeweils unter den besten Universitäten Deutschlands. Die TUM ist dem Leitbild einer forschungsstarken, unternehmerischen Universität verpflichtet. Weltweit ist die TUM mit einem Forschungscampus in Singapur sowie Niederlassungen in Peking (China), Brüssel (Belgien), Kairo (Ägypten) und Sao Paulo (Brasilien) vertreten.

Dr. Andreas Battenberg | Technische Universität München
Weitere Informationen:
http://www.tum.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund
22.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Nah dran an der Fiktion: Die Außenhaut für das Raumschiff „Enterprise“?
22.06.2018 | Technische Universität Chemnitz

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics