Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Verräterische Wärme

02.03.2009
Ist das Rotorblatt der Windkraftanlage noch intakt? Oder weist es winzige Luftblasen auf, die sich ausweiten und schließlich zum Bruch führen könnten?
Die Infrarot-Thermographie spürt Materialfehler schnell und kostengünstig auf.
Auf den ersten Blick betrachtet, wirkt das Rotorblatt makellos. Doch der Experte weiß, dass auf äußere Schönheit kein Verlass ist.

Thermographische Aufnahme von Lufteinschlüssen (hell) in einem Rotorblatt. © Fraunhofer WKI

Er klopft die Oberfläche ab, lauscht. Ein satter, tiefer Ton lässt ihn wissen, dass das Laminat homogen ist, ein eher flacher, hohler Ton deutet auf Unstetigkeiten im Material hin. Oberflächennahe Delaminationen und Hohlstellen ab einer gewissen Größe kann der Sachverständige auch erkennen, indem er mit der Hand über die Oberfläche streicht. Aber selbst ein erfahrener Prüfer kann auf diese Weise nicht alle versteckten Fehler auffinden.

Rotorblätter bestehen vorwiegend aus Glasfasern, die als Matten oder Gelege verarbeitet werden: Um ein 60 Meter langes Rotorblatt zu formen, müssen Hunderte solcher Matten plan in eine Form gelegt und im Vakuum mit speziellen Harzen imprägniert werden. Kleine Unregelmäßigkeiten können dazu führen, dass sich Luftblasen oder andere Fehler bilden. Wird das Rotorblatt den Belastungen des Alltags ausgesetzt, führen diese Fehler oft zu mechanischen Spannungen im Material. Die Folge: Das Laminat kann aufreißen, die Rotorblätter frühzeitig versagen.

Forscher vom Fraunhofer Wilhelm-Klauditz-Institut WKI in Braunschweig machen solche Fehler sichtbar: "Die Infrarot-Thermographie ist dafür gut geeignet, denn sie ist schnell, verhältnismäßig preisgünstig und verursacht keine Schäden", erklärt Dr. Hiltrud Brocke, Projektleiterin am WKI. "Die Oberfläche wird kurz mit einem Infrarotstrahler erwärmt. Eine Spezialkamera zeigt, wie sich die Wärmefront im Material ausbreitet. Stößt die Front auf Lufteinschlüsse oder Delaminationen, staut sie sich, weil sich Wärme in Luft schlechter ausbreitet als in festem Laminat." Einige Zentimeter tief blicken die Forscher auf diese Weise in das Material hinein.

"Weil die Apparatur aus Infrarotstrahler, Kamera und Rechner mobil ist, können wir während der Fertigung messen, am Ende des Transportwegs und auch an fertig montierten Windenergieanlagen", sagt Brocke. Auf der Hannover-Messe vom 20. bis 24. April zeigen die Forscher ihre Technik an einem Rotorblattabschnitt, in den sie einige typische Fehler eingebaut haben (Halle 27, Stand G20).

Hiltrud Brocke | Fraunhofer-Gesellschaft
Weitere Informationen:
http://www.wki.fraunhofer.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Recyclingfähige, formflexible Wasserstofftanks für Brennstoffzellen-Autos
21.09.2018 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

nachricht Neuer Super-Kunststoff mit positiver Ökobilanz
18.09.2018 | Rheinisch-Westfälische Technische Hochschule Aachen

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht

Wieso sind manche Metalle magnetisch? Diese einfache Frage ist wissenschaftlich gar nicht so leicht fundiert zu beantworten. Das zeigt eine aktuelle Arbeit von Wissenschaftlern des Forschungszentrums Jülich und der Universität Halle. Den Forschern ist es zum ersten Mal gelungen, in einem magnetischen Material, in diesem Fall Kobalt, die Wechselwirkung zwischen einzelnen Elektronen sichtbar zu machen, die letztlich zur Ausbildung der magnetischen Eigenschaften führt. Damit sind erstmals genaue Einblicke in den elektronischen Ursprung des Magnetismus möglich, die vorher nur auf theoretischem Weg zugänglich waren.

Für ihre Untersuchung nutzten die Forscher ein spezielles Elektronenmikroskop, das das Forschungszentrum Jülich am Elettra-Speicherring im italienischen Triest...

Im Focus: Erstmals gemessen: Wie lange dauert ein Quantensprung?

Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Der Truck der Zukunft

Lastkraftwagen (Lkw) sind für den Gütertransport auch in den kommenden Jahrzehnten unverzichtbar. Wissenschaftler und Wissenschaftlerinnen der Technischen Universität München (TUM) und ihre Partner haben ein Konzept für den Truck der Zukunft erarbeitet. Dazu zählen die europaweite Zulassung für Lang-Lkw, der Diesel-Hybrid-Antrieb und eine multifunktionale Fahrerkabine.

Laut der Prognose des Bundesministeriums für Verkehr und digitale Infrastruktur wird der Lkw-Güterverkehr bis 2030 im Vergleich zu 2010 um 39 Prozent steigen....

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungen

Forum Additive Fertigung: So gelingt der Einstieg in den 3D-Druck

21.09.2018 | Veranstaltungen

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

ISO-27001-Zertifikat für die GFOS mbH und die GFOS Technologieberatung GmbH

21.09.2018 | Unternehmensmeldung

Tiefseebergbau: Forschung zu Risiken und ökologischen Folgen geht weiter

21.09.2018 | Geowissenschaften

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics