Verformung komplexer Metalle: Bugwelle ordnet Puzzlestücke

Erstmals konnten die Forscher des Instituts für Festkörperforschung zeigen, wie ein Versetzungsmechanismus in einer hochkomplexen Struktur funktioniert. Die Entdeckung lässt sich zukünftig für ein zielgerichtetes Materialdesign nutzen, berichten die Wissenschaftler in der Fachzeitschrift „nature materials“.

Dr. Marc Heggen, Dr. Lothar Houben und Dr. Michael Feuerbacher untersuchten ein typisches Material aus der großen Gruppe der „Komplexen intermetallischen Phasen“ (Complex Metallic Alloys, CMAs), die erst in den vergangenen Jahren durch verbesserte Untersuchungsmethoden und technologische Fortschritte in den Fokus der Forschung rückte.

„Das überraschende an CMA-Materialien ist, dass sie durch Druck deformierbar sind, obwohl die Verformungsmechanismen einfacher Kristalle bei ihnen nicht funktionieren können und man deshalb eigentlich erwarten würde, dass das Material leicht bricht“, erläutern die Physiker. Denn CMA-Materialien haben einen ungleich komplizierteren Aufbau als einfache Kristalle.

Die Forscher verfolgten nun mit einem hochauflösenden Rastertransmissionselektronenmikroskop, was auf atomarer Ebene bei der Verformung passiert: Die Schlüsselrolle spielt eine sogenannte Versetzung, die in diesem Fall außergewöhnlich komplex und mehr als hundert Mal größer als in einfach strukturierten Metallen ist. Während der Verformung bewegt sich die Versetzung durch die Kristallstruktur und schiebt dabei wie ein Schiff im Wasser eine Bugwelle vor sich her, in der die atomare Umordnung vorbereitet wird. Dabei müssen jeweils einige Tausend Atome koordinierte Platzwechsel durchführen.

„Der Mechanismus nutzt das Vorhandensein einer benachbarten, strukturell verwandten Phase im Legierungssystem als zusätzlichen Freiheitsgrad für die plastische Verformung, um so ein Versagen des Materials durch Bruch zu verhindern“, berichten die Autoren. Obwohl der Mechanismus auf atomarer Ebene äußerst komplex ist, lässt er sich durch ein einfaches Modell beschreiben, bei dem geometrische Elemente wie Puzzlestücke ineinandergreifen.

Artikel in „nature materials“:
http://www.nature.com/nmat/journal/vaop/ncurrent/abs/nmat2713.htm
DOI: 10.1038/NMAT2713
Weiterführende Informationen zur Jülicher Mikrostrukturforschung:
http://www.fz-juelich.de/iff/e_imf_synthesis/

Media Contact

Annemarie Winkens FZ Jülich

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer