Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ventile für winzige Teilchen

23.05.2018

Mit neuentwickelten Nanoventilen lässt sich in winzigen Kanälen der Fluss von einzelnen Nanopartikeln in Flüssigkeiten steuern. Das ist Interessant für sogenannte Lab-on-a-Chip-Anwendungen in der Materialwissenschaft oder der Biomedizin.

Forschende der ETH Zürich haben winzige Ventile entwickelt, mit denen sich einzelne Nanoteilchen aus Flüssigkeiten separieren und sortieren lassen.


Grafische Darstellung eines Mikroleitungssystems mit einer Verzweigung und drei Ventilen, zwischen denen einzelne Nanopartikel festgehalten werden können. (Grafik: ETH Zürich / Giacomo Sebastiano Palamara)

Die Ventile eignen sich für eine riesige Palette winziger Teilchen, darunter einzelne Metall- oder Halbleiter-Nanoteilchen, Viruspartikel, Liposomen oder grössere Biomoleküle wie Antikörper.

Die Nanoventile funktionieren anders als klassische Ventile, mit denen eine Leitung wie bei einem Wasserhahn mechanisch verschlossen und geöffnet werden.

«Solche mechanischen Ventile lassen sich zwar miniaturisieren, aber nicht beliebig weit», erklärt ETH-Professor Poulikakos. «Sind Leitungen dünner als einige Dutzendzehn Mikrometer, lassen sie sich mechanisch nicht verschliesen und öffnen.»

Engstelle mit Elektroden

Um auch rund hundertmal feinere Leitungen beliebig oft öffnen und schliessen zu können, setzten die ETH-Wissenschaftler elektrische Kräfte ein. Die Forschenden arbeiteten mit in einen Siliziumchip geätzten Leitungen, die einen Durchmesser von nur 300 bis 500 Nanometern aufwiesen.

Das ist weniger als ein Hundertstel des Durchmessers eines menschlichen Haars. In diesen Leitungen konstruierten sie Nanoventile, in dem sie die Leitung mittels Nanolithografie leicht verengten und auf beiden Seiten der Engstelle eine Elektrode anbrachten.

Nanopartikel in reinem Wasser können die Engstelle nicht einfach so passieren. Für sie ist das Ventil im Grundzustand geschlossen. Indem die Elektroden in bestimmter Weise aktiviert werden, ändert sich das elektrische Feld an der Engstelle. Dies führt dazu, dass eine Kraft auf anwesende Nanopartikel wirkt, welche die Teilchen durch die Engstelle stossen – das Ventil lässt sich so öffnen.

Nanopartikel in einer salzhaltigen Lösung verhalten sich hingegen anders: Sie können die Engstelle im Grundzustand passieren – das Ventil ist für sie geöffnet. Wie die Wissenschaftler zeigen konnten, lassen sich diese Partikel jedoch durch geschicktes Anlegen von Wechselstromfeldern an den Elektroden zurückhalten. Auf diese Weise lassen sich zum Beispiel biologische Partikel wie Viren, Liposome oder Antikörper handhaben, die sowohl natürlicherweise als auch in Labors normalerweise in salzhaltigen Flüssigkeiten vorliegen.

Zitternde Nanopartikel bändigen

«Einzelne Nanopartikel in einer Flüssigkeit zu untersuchen, ist grundsätzlich schwierig, weil auf der Nanoskala die Brownsche Molekularbewegung wirkt», erklärt Hadi Eghlidi, Senior Scientist in Poulikakos’ Gruppe. Die kleinen Teilchen halten nicht still, sondern zittern ständig, mit einem Bewegungsradius, der ein Vielfaches ihres Durchmessers beträgt. «Zwischen zwei oder mehreren Ventilen können wir die Moleküle jedoch auf engem Raum festhalten, und sie so zum Beispiel unter einem Mikroskop untersuchen.»

Im Rahmen eines Machbarkeitsnachweises erstellten die Wissenschaftler auf einem Siliziumchip eine Vereinzelungs- und Sortierungsschleuse mit einer Verzweigung und drei Ventilen. An der Verzweigungsstelle kann ein einzelnes Nanopartikel festgehalten und untersucht werden. Anschliessend kann man die Ventile so steuern, dass das Teilchen das System durch eine von zwei Ausgangsleitungen verlässt.

Nanopartikel in Flüssigkeit können so in zwei Klassen sortiert werden. Den ETH-Forschenden gelang es gemeinsam mit Kollegen der Universität Zürich, mit diesem System sogar winzige Halbleiter-Nanopartikel (sogenannte Quantenpunkte) sowie Antikörper – beides mit nur 10 Nanometern Durchmesser – zu handhaben.

Lab-on-a-Chip-Anwendungen

Wie die Wissenschaftler betonen, lässt sich auf einem Siliziumchip im Prinzip ein beliebig komplexes Nanoleitungssystem mit beliebig vielen steuerbaren Ventilen anordnen. «Mittels Feineinstellung des elektrischen Feldes an den Elektroden könnte es in Zukunft sogar möglich sein, die Ventile als Filter zu benutzten, die Partikel mit bestimmten physikalischen Eigenschaften durchlassen, andere jedoch nicht», sagt Christian Höller, Doktorand in Poulikakos’ Gruppe.

Die Wissenschaftler möchten die Technik nun gemeinsam mit Partnern weiterentwickeln, um sie reif zu machen für Anwendungen in der Forschung. Es liessen sich damit auf einem kleinen Chip beispielsweise Teilchen sortieren, was für die Materialwissenschaft oder die Biomedizin interessant wäre. Denkbar wären auch Anwendungen, um synthetische Teilchen oder biologische Partikel zu vereinzeln, um sie zum Beispiel mikroskopisch zu untersuchen oder um den Einfluss von pharmazeutischen Wirkstoffen auf sie zu analysieren.

Literaturhinweis

Eberle P, Höller C, Müller P, Suomalainen M, Greber UF, Eghlidi H, Poulikakos D: Single entity resolution valving of nanoscopic species in liquids. Nature Nanotechnology, 21. Mai 2018, doi: 10.1038/s41565-018-0150-y [http://dx.doi.org/10.1038/s41565-018-0150-y]

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2018/05/ventile-fu...

Hochschulkommunikation | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Reversibel und nachhaltig - Neue korrosionsschützende Beschichtungen auf archäologischen Metallen
18.01.2019 | INNOVENT e.V. Technologieentwicklung Jena

nachricht Chemiker der Saar-Uni entwickeln neues Material, das Seltene Erden bei LED-Lampen spart
18.01.2019 | Universität des Saarlandes

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Fliegende optische Katzen für die Quantenkommunikation

Gleichzeitig tot und lebendig? Max-Planck-Forscher realisieren im Labor Erwin Schrödingers paradoxes Gedankenexperiment mithilfe eines verschränkten Atom-Licht-Zustands.

Bereits 1935 formulierte Erwin Schrödinger die paradoxen Eigenschaften der Quantenphysik in einem Gedankenexperiment über eine Katze, die gleichzeitig tot und...

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Implantate aus Nanozellulose: Das Ohr aus dem 3-D-Drucker

Aus Holz gewonnene Nanocellulose verfügt über erstaunliche Materialeigenschaften. Empa-Forscher bestücken den biologisch abbaubaren Rohstoff nun mit zusätzlichen Fähigkeiten, um Implantate für Knorpelerkrankungen mittels 3-D-Druck fertigen zu können.

Alles beginnt mit einem Ohr. Empa-Forscher Michael Hausmann entfernt das Objekt in Form eines menschlichen Ohrs aus dem 3-D-Drucker und erklärt: «Nanocellulose...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Smarte Sensorik für Mobilität und Produktion 4.0 am 07. Februar 2019 in Oldenburg

18.01.2019 | Veranstaltungen

16. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

17.01.2019 | Veranstaltungen

Erstmalig in Nürnberg: Tagung „HR-Trends 2019“

17.01.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Zeitwirtschafts- und Einsatzplanungsprozesse effizient und transparent gestalten mit dem Workforce Management System der GFOS

18.01.2019 | Unternehmensmeldung

Der Schlaue Klaus erlaubt keine Fehler

18.01.2019 | Informationstechnologie

Neues Verfahren zur Grundwassersanierung: Mit Eisenoxid gegen hochgiftige Stoffe

18.01.2019 | Verfahrenstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics