Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Universität Rostock testet Flüssigkeiten zum Abschrecken von Metall

04.11.2013
Fächerübergreifende Forschung mit ersten erfolgreichen Ergebnissen

Jeder kennt das aus dem Haushalt: wenn man die gekochten Eier gut abschreckt, lassen sie sich viel besser verarbeiten. Was aber im Kleinen nützlich und bequem ist - wie setzt man das etwa in der Industrie um? Denn auch dort müssen metallische Bauteile nach der Wärmebehandlung "abgeschreckt" werden. Da reicht es nicht, den Wasserhahn aufzudrehen. Das hat negative Auswirkungen auf die Qualität. So kann es zum Verzug bei Bauteilen kommen.


Foto: Christin Schmidt und Martin Beck demonstrieren ein Abschreckexperiment an einem selbst konstruierten Versuchsstand (Foto: Universität/ Julia Tetzke)

Wissenschaftler der Universität Rostock aus dem Maschinenbau, der Chemie und Physik haben im Rahmen eines DFG-Forschungsprojektes herausgefunden, dass es eine neuartige Flüssigkeitsklasse gibt, die den Abschreckvorgang, also das rasche Abkühlen, deutlich verbessern und vielleicht schon bald industriell angewendet und verfeinert werden kann. Die Schlüsselrolle dabei spielen Ionische Flüssigkeiten. Sie haben erst in der letzten Dekade eine Reihe von neuen Anwendungsfeldern erschlossen.

"Durch ihre speziellen Eigenschaften lassen sie sich gut für das Abschrecken metallischer Bauteile verwenden", sagt Diplom-Ingenieur Martin Beck. Sein Ziel: "Es muss schnell, gleichmäßig und einfach funktionieren". Der junge Wissenschaftler vom Lehrstuhl für Werkstofftechnik hat jetzt auf dem Härtereikongress in Wiesbaden, das ist die größte Fachtagung für Wärmebehandlung im europäischen Raum, einem internationalen Publikum die neusten Forschungsergebnisse bei der Wärmebehandlung metallischer Bauteile mit Ionischen Flüssigkeiten vorgestellt. Der 27-Jährige wird dafür mit dem Paul-Riebensahm-Preis ausgezeichnet. Der wird jedes Jahr für den besten Vortrag eines jungen Wissenschaftlers vergeben.

Die Anwendungsgebiete Ionischer Flüssigkeiten halten Martin Beck sowie seine Kollegen, die Chemikerin Christin Schmidt und der Physiker Dr. Mathias Ahrenberg für schier unbegrenzt. Sie sind zudem ein ausgewiesener Forschungsschwerpunkt des Instituts für Chemie der Universität Rostock. Nicht zuletzt war mit Paul Walden vor über 90 Jahren ein Pionier der Forschung zu Ionischen Flüssigkeiten im Rostocker Institut für Chemie tätig, auch wenn der Begriff Ionische Flüssigkeit für diese Substanzklasse erst deutlich später eingeführt wurde. Nach zahlreichen Versuchsreihen mit Metallzylindern steht für Martin Beck fest, dass es bei der Wärmebehandlung von metallischen Bauteilen ein "enormes Potenzial" gibt.

"Bislang wird beim schnellen Abkühlen großer Stahl- oder Aluminiumbauteile von ihrer Glühtemperatur runter in den unkritischen Temperaturbereich in der industriellen Fertigung überwiegend mit Wasserbädern gearbeitet", erläutert der junge Physiker Dr. Mathias Ahrenberg. "Beim Eintauchen kommt es dabei jedoch zum so genannten Leidenfrosteffekt". Das heißt im Klartext: das siedende Wasser bildet eine thermisch isolierende Schicht um das Bauteil und behindert so die schnelle Kühlung. Daraus resultierende Inhomogenitäten in der Temperaturverteilung innerhalb des Bauteils führen zu unerwünschtem Verzug. Ahrenberg sagt: "Ionische Flüssigkeiten sind bekannt für ihre hohe thermische Stabilität und ihren geringen Dampfdruck, das heißt also das sie bei Raumtemperatur quasi nicht verdampfen. "Das macht sie zu perfekten Kandidaten für das industrielle Abschrecken von Bauteilen".

"Gerade durch das Verknüpfen unterschiedlicher Bereiche wird in Rostock immer wieder Neues angestoßen", ist Prof. Udo Kragl, Lehrstuhlinhaber für Technische Chemie und Dekan der Interdisziplinären Fakultät, zufrieden. "Es macht Spaß, unterschiedliche Fragestellungen aus unterschiedlichen Perspektiven zu diskutieren", sagt Kragl. Für ihn steht fest: Innovative Lösungen brauchen vor allem zwei Dinge: Eine extrem hohe Spezialisierung und eine denkbar enge Interaktion verschiedener Wissensgebiete. Mehr denn je basieren neue Ideen und Technologien auf interdisziplinärem Denken.

Martin Beck wirft den Blick voraus, will weitere Versuche mit Ionischen Flüssigkeiten unterschiedlicher Zusammensetzung fahren, um zu sehen, ob sich der Verzug von Bauteilen dadurch reduzieren lässt. (Text: Wolfgang Thiel)

Dipl.- Ing. (SFI) Martin Beck
Fakultät für Maschinenbau und Schiffstechnik Lehrstuhl für Werkstofftechnik
Telefon: +49 (0)381 498 9484
Fax: +49 (0)381 498 9472
E-Mail: martin.beck@uni-rostock.de
Web: www.metals.uni-rostock.de
Universität Rostock
Presse und Kommunikation
Ingrid Rieck
Ulmenstr. 69/Haus 3
18057 Rostock
Tel: 0381 498 1012
Fax: 0381 498 1032
www.uni-rostock.de

Ingrid Rieck | Universität Rostock
Weitere Informationen:
http://www.uni-rostock.de
http://www.metals.uni-rostock.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Recyclingfähige, formflexible Wasserstofftanks für Brennstoffzellen-Autos
21.09.2018 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

nachricht Neuer Super-Kunststoff mit positiver Ökobilanz
18.09.2018 | Rheinisch-Westfälische Technische Hochschule Aachen

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht

Wieso sind manche Metalle magnetisch? Diese einfache Frage ist wissenschaftlich gar nicht so leicht fundiert zu beantworten. Das zeigt eine aktuelle Arbeit von Wissenschaftlern des Forschungszentrums Jülich und der Universität Halle. Den Forschern ist es zum ersten Mal gelungen, in einem magnetischen Material, in diesem Fall Kobalt, die Wechselwirkung zwischen einzelnen Elektronen sichtbar zu machen, die letztlich zur Ausbildung der magnetischen Eigenschaften führt. Damit sind erstmals genaue Einblicke in den elektronischen Ursprung des Magnetismus möglich, die vorher nur auf theoretischem Weg zugänglich waren.

Für ihre Untersuchung nutzten die Forscher ein spezielles Elektronenmikroskop, das das Forschungszentrum Jülich am Elettra-Speicherring im italienischen Triest...

Im Focus: Erstmals gemessen: Wie lange dauert ein Quantensprung?

Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Der Truck der Zukunft

Lastkraftwagen (Lkw) sind für den Gütertransport auch in den kommenden Jahrzehnten unverzichtbar. Wissenschaftler und Wissenschaftlerinnen der Technischen Universität München (TUM) und ihre Partner haben ein Konzept für den Truck der Zukunft erarbeitet. Dazu zählen die europaweite Zulassung für Lang-Lkw, der Diesel-Hybrid-Antrieb und eine multifunktionale Fahrerkabine.

Laut der Prognose des Bundesministeriums für Verkehr und digitale Infrastruktur wird der Lkw-Güterverkehr bis 2030 im Vergleich zu 2010 um 39 Prozent steigen....

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungen

Forum Additive Fertigung: So gelingt der Einstieg in den 3D-Druck

21.09.2018 | Veranstaltungen

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue CBMC-Geräteschutzschaltervarianten

22.09.2018 | Energie und Elektrotechnik

ISO-27001-Zertifikat für die GFOS mbH und die GFOS Technologieberatung GmbH

21.09.2018 | Unternehmensmeldung

Kundenindividuelle Steckverbinder online konfigurieren und bestellen

21.09.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics