Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ultradünne Supergitter als Goldnanopartikeln für die Nanophotonik

16.05.2019

Physikalische Chemie: Veröffentlichung in ACS Applied Materials & Interfaces

In der Arbeitsgruppe von Prof. Dr. Matthias Karg am Institut für Physikalische Chemie der Heinrich-Heine-Universität Düsseldorf (HHU) entstehen ultradünne, hochgeordnete Schichten von Hydrogelkugeln, in denen Gold- oder Silberpartikel eingeschlossen sind.


Auf einen Glasträger übertragene ultradünne Schicht aus Hydrogelkügelchen mit Goldpartikeln.

HHU / Christoph Kawan


Herstellung der Schichtstruktur

HHU / Christoph Kawan

Diese Strukturen sind für Anwendungen in der Optoelektronik – der Informations- und Kommunikationstechnik auf Grundlage von Licht – und Nanophotonik interessant. Ergebnisse zu einem wichtigen Schritt in Richtung sogenannter „plasmonischer Nanolaser“ veröffentlichen die Forscher in der Fachzeitschrift ACS Applied Materials & Interfaces.

Die Arbeitsgruppe „Kolloide und Nanooptik“ um Prof. Dr. Matthias Karg am Institut für Physikalische Chemie hat eine einfache und zugleich präzise Technik entwickelt, um hochgeordnete Teilchenschichten zu entwickeln. Sie nutzen winzig kleine, weiche und deformierbare Polymerkugeln mit einer hydrogelartigen Struktur.

Hydrogele sind wassergequollene dreidimensionale Netzwerke. Solche Strukturen kennt man zum Beispiel von Superabsorbern in Babywindeln, die in der Lage sind, große Mengen an Wasser zu binden.

Innerhalb dieser Kügelchen befinden sich winzige, nur wenige Nanometer große Gold- beziehungsweise Silberpartikel, die Kargs Team selber an der HHU aus Salzen der Metalle in einem Reduktionsverfahren herstellt.

„Wir können die Größe der Goldpartikel sehr genau einstellen, denn die Hydrogelhüllen sind für gelöste Metallsalze durchlässig, wodurch ein nachträgliches Überwachsen der Goldkerne möglich wird.“ Den Aufbau dieser Kern-Schale Partikel kann man in etwa mit einer Kirsche vergleichen. Hier ist ein harter Kern vom weichen Fruchtfleisch umgeben. Die Partikel aus dem Labor sind allerdings etwa einhunderttausendmal kleiner.

Aus einer verdünnten Lösung dieser Hydrogelkügelchen können die Düsseldorfer dann dünne Schichten herstellen. Sie geben die Kügelchen auf eine Wasseroberfläche, an der sich von alleine eine hochgeordnete und bunt schillernde Schicht ausbildet. Diese Schicht heben sie mithilfe von Glasträgern von der Wasseroberfläche ab. Durch diesen Übertrag auf das Glas schillert nun der gesamte Glasträgern.

Schaut man sich diese Schicht unter dem Elektronenmikroskop an, sieht man ein regelmäßiges Sechseckmuster kleiner Punkte. „Dies sind die Goldpartikel in ihren Hüllen“, erläutert Doktorandin Kirsten Volk, „und wir sehen, dass diese in einer einzigen, hochgeordneten Schicht liegen.“ Die Goldpartikel sorgen für die Farbigkeit der Schicht: An ihnen wird sichtbares Licht bestimmter Wellenlängen reflektiert, welches interferiert und so unter verschiedenen Blickwinkeln einen unterschiedlichen Farbeindruck gibt.

„Diese dünnen Schichten sind für die Optoelektronik – also die Datenleitung und -verarbeitung mit Hilfe von Licht – sehr spannend. Mit ihnen kann es außerdem möglich werden, miniaturisierte Laser zu bauen“, so Prof. Karg. Solche Nanolaser sind nur Nanometer groß und stellen damit eine Schlüsseltechnologie im Bereich der Nanophotonik dar.

In einer jetzt in der Fachzeitschrift ACS Applied Materials & Interfaces veröffentlichten Studie haben die Düsseldorfer Forscher eine wichtige Hürde auf dem Weg zu solchen Nanolasern genommen. Sie konnten die Goldpartikel durch von außen eingestrahltes Licht zu kollektiven Schwingungen anregen.

Es wird also nicht jedes Goldteilchen individuell angeregt, sondern alle Teilchen schwingen gemeinsam. Diese gemeinsame Schwingung ist die Grundvoraussetzung für den Aufbau von Lasern. Das besondere an den veröffentlichen Forschungsergebnissen ist, dass die Teilchenschichten nicht nur sehr einfach und auf großen Flächen aufgebaut werden können, sondern auch besonders dünn sind.

Für optoelektronische Anwendungen und Nanolaser müssen die Schwingungen in den dünnen Schichten weiter verstärkt werden. Prof. Karg: „Als Nächstes werden wir versuchen, die Anregung durch eine gezielte Dotierung weiter zu verstärken. Langfristig könnte es so auch gelingen elektrisch betreibbare Nanolaser zu realisieren.“

Originalpublikation:

Kirsten Volk, Joseph P. S. Fitzgerald, and Matthias Karg, In-Plane Surface Lattice and Higher Order Resonances in Self-Assembled Plasmonic Monolayers: From Substrate-Supported to Free-Standing Thin Films, ACS Appl. Mater. Interfaces 2019 11 (17), 16096-16106
DOI: 10.1021/acsami.9b03197

Weitere Informationen:

https://pubs.acs.org/doi/10.1021/acsami.9b03197

Dr.rer.nat. Arne Claussen | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.hhu.de/

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Dehnbare Elektronik: Neues Verfahren vereinfacht Herstellung funktionaler Prototypen
17.10.2019 | Universität des Saarlandes

nachricht Für höhere Reichweiten von E-Mobilen: Potentiale von Leichtbauwerkstoffen besser ausschöpfen
17.10.2019 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hohlraum vermittelt starke Wechselwirkung zwischen Licht und Materie

Forschern ist es gelungen, mithilfe eines mikroskopischen Hohlraumes eine effiziente quantenmechanische Licht-Materie-Schnittstelle zu schaffen. Darin wird ein einzelnes Photon bis zu zehn Mal von einem künstlichen Atom ausgesandt und wieder absorbiert. Das eröffnet neue Perspektiven für die Quantentechnologie, berichten Physiker der Universität Basel und der Ruhr-Universität Bochum in der Zeitschrift «Nature».

Die Quantenphysik beschreibt Photonen als Lichtteilchen. Will man ein einzelnes Photon mit einem einzelnen Atom interagieren lassen, stellt dies aufgrund der...

Im Focus: A cavity leads to a strong interaction between light and matter

Researchers have succeeded in creating an efficient quantum-mechanical light-matter interface using a microscopic cavity. Within this cavity, a single photon is emitted and absorbed up to 10 times by an artificial atom. This opens up new prospects for quantum technology, report physicists at the University of Basel and Ruhr-University Bochum in the journal Nature.

Quantum physics describes photons as light particles. Achieving an interaction between a single photon and a single atom is a huge challenge due to the tiny...

Im Focus: Freiburger Forschenden gelingt die erste Synthese eines kationischen Tetraederclusters in Lösung

Hauptgruppenatome kommen oft in kleinen Clustern vor, die neutral, negativ oder positiv geladen sein können. Das bekannteste neutrale sogenannte Tetraedercluster ist der weiße Phosphor (P4), aber darüber hinaus sind weitere Tetraeder als Substanz isolierbar. Es handelt sich um Moleküle aus vier Atomen, deren räumliche Anordnung einem Tetraeder aus gleichseitigen Dreiecken entspricht. Bisher waren neben mindestens sechs neutralen Versionen wie As4 oder AsP3 eine Vielzahl von negativ geladenen Tetraedern wie In2Sb22– bekannt, jedoch keine kationischen, also positiv geladenen Varianten.

Ein Team um Prof. Dr. Ingo Krossing vom Institut für Anorganische und Analytische Chemie der Universität Freiburg ist es gelungen, diese positiv geladenen...

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

13. Aachener Technologie- und Innovationsmanagement-Tagung – »Collaborate to Innovate: Making the Net Work«

22.10.2019 | Veranstaltungen

Serienfertigung von XXL-Produkten: Expertentreffen in Hannover

22.10.2019 | Veranstaltungen

Digitales-Krankenhaus – wo bleibt der Mensch?

21.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

13. Aachener Technologie- und Innovationsmanagement-Tagung – »Collaborate to Innovate: Making the Net Work«

22.10.2019 | Veranstaltungsnachrichten

Studenten entwickeln einen Koffer, der automatisch auf Schritt und Tritt folgt

22.10.2019 | Innovative Produkte

Chemikern der Universität Münster gelingt Herstellung neuartiger Lewis-Supersäuren auf Phosphor-Basis

22.10.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics