Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ultradünne Supergitter als Goldnanopartikeln für die Nanophotonik

16.05.2019

Physikalische Chemie: Veröffentlichung in ACS Applied Materials & Interfaces

In der Arbeitsgruppe von Prof. Dr. Matthias Karg am Institut für Physikalische Chemie der Heinrich-Heine-Universität Düsseldorf (HHU) entstehen ultradünne, hochgeordnete Schichten von Hydrogelkugeln, in denen Gold- oder Silberpartikel eingeschlossen sind.


Auf einen Glasträger übertragene ultradünne Schicht aus Hydrogelkügelchen mit Goldpartikeln.

HHU / Christoph Kawan


Herstellung der Schichtstruktur

HHU / Christoph Kawan

Diese Strukturen sind für Anwendungen in der Optoelektronik – der Informations- und Kommunikationstechnik auf Grundlage von Licht – und Nanophotonik interessant. Ergebnisse zu einem wichtigen Schritt in Richtung sogenannter „plasmonischer Nanolaser“ veröffentlichen die Forscher in der Fachzeitschrift ACS Applied Materials & Interfaces.

Die Arbeitsgruppe „Kolloide und Nanooptik“ um Prof. Dr. Matthias Karg am Institut für Physikalische Chemie hat eine einfache und zugleich präzise Technik entwickelt, um hochgeordnete Teilchenschichten zu entwickeln. Sie nutzen winzig kleine, weiche und deformierbare Polymerkugeln mit einer hydrogelartigen Struktur.

Hydrogele sind wassergequollene dreidimensionale Netzwerke. Solche Strukturen kennt man zum Beispiel von Superabsorbern in Babywindeln, die in der Lage sind, große Mengen an Wasser zu binden.

Innerhalb dieser Kügelchen befinden sich winzige, nur wenige Nanometer große Gold- beziehungsweise Silberpartikel, die Kargs Team selber an der HHU aus Salzen der Metalle in einem Reduktionsverfahren herstellt.

„Wir können die Größe der Goldpartikel sehr genau einstellen, denn die Hydrogelhüllen sind für gelöste Metallsalze durchlässig, wodurch ein nachträgliches Überwachsen der Goldkerne möglich wird.“ Den Aufbau dieser Kern-Schale Partikel kann man in etwa mit einer Kirsche vergleichen. Hier ist ein harter Kern vom weichen Fruchtfleisch umgeben. Die Partikel aus dem Labor sind allerdings etwa einhunderttausendmal kleiner.

Aus einer verdünnten Lösung dieser Hydrogelkügelchen können die Düsseldorfer dann dünne Schichten herstellen. Sie geben die Kügelchen auf eine Wasseroberfläche, an der sich von alleine eine hochgeordnete und bunt schillernde Schicht ausbildet. Diese Schicht heben sie mithilfe von Glasträgern von der Wasseroberfläche ab. Durch diesen Übertrag auf das Glas schillert nun der gesamte Glasträgern.

Schaut man sich diese Schicht unter dem Elektronenmikroskop an, sieht man ein regelmäßiges Sechseckmuster kleiner Punkte. „Dies sind die Goldpartikel in ihren Hüllen“, erläutert Doktorandin Kirsten Volk, „und wir sehen, dass diese in einer einzigen, hochgeordneten Schicht liegen.“ Die Goldpartikel sorgen für die Farbigkeit der Schicht: An ihnen wird sichtbares Licht bestimmter Wellenlängen reflektiert, welches interferiert und so unter verschiedenen Blickwinkeln einen unterschiedlichen Farbeindruck gibt.

„Diese dünnen Schichten sind für die Optoelektronik – also die Datenleitung und -verarbeitung mit Hilfe von Licht – sehr spannend. Mit ihnen kann es außerdem möglich werden, miniaturisierte Laser zu bauen“, so Prof. Karg. Solche Nanolaser sind nur Nanometer groß und stellen damit eine Schlüsseltechnologie im Bereich der Nanophotonik dar.

In einer jetzt in der Fachzeitschrift ACS Applied Materials & Interfaces veröffentlichten Studie haben die Düsseldorfer Forscher eine wichtige Hürde auf dem Weg zu solchen Nanolasern genommen. Sie konnten die Goldpartikel durch von außen eingestrahltes Licht zu kollektiven Schwingungen anregen.

Es wird also nicht jedes Goldteilchen individuell angeregt, sondern alle Teilchen schwingen gemeinsam. Diese gemeinsame Schwingung ist die Grundvoraussetzung für den Aufbau von Lasern. Das besondere an den veröffentlichen Forschungsergebnissen ist, dass die Teilchenschichten nicht nur sehr einfach und auf großen Flächen aufgebaut werden können, sondern auch besonders dünn sind.

Für optoelektronische Anwendungen und Nanolaser müssen die Schwingungen in den dünnen Schichten weiter verstärkt werden. Prof. Karg: „Als Nächstes werden wir versuchen, die Anregung durch eine gezielte Dotierung weiter zu verstärken. Langfristig könnte es so auch gelingen elektrisch betreibbare Nanolaser zu realisieren.“

Originalpublikation:

Kirsten Volk, Joseph P. S. Fitzgerald, and Matthias Karg, In-Plane Surface Lattice and Higher Order Resonances in Self-Assembled Plasmonic Monolayers: From Substrate-Supported to Free-Standing Thin Films, ACS Appl. Mater. Interfaces 2019 11 (17), 16096-16106
DOI: 10.1021/acsami.9b03197

Weitere Informationen:

https://pubs.acs.org/doi/10.1021/acsami.9b03197

Dr.rer.nat. Arne Claussen | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.hhu.de/

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Charakterisierung von thermischen Schnittstellen für modulare Satelliten
19.02.2020 | Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung

nachricht Freiburger Forscher untersucht Ursprünge der Beschaffenheit von Oberflächen
17.02.2020 | Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Loopings der Bakterien: Forschungsteam mit Beteiligung der Universität Göttingen analysiert Fortbewegung

Das magnetotaktische Bakterium Magnetococcus marinus schwimmt mit Hilfe von zwei Bündeln von Geißeln. Außerdem besitzen die Bakterienzellen eine Art intrazelluläre Kompassnadel und können daher mit einem Magnetfeld gesteuert werden. Sie werden deshalb als biologisches Modell für Mikroroboter benutzt. Ein internationales Team der Universität Göttingen, des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung in Potsdam und der CEA Cadarache (Frankreich) hat nun aufgeklärt, wie sich diese Bakterien bewegen und deren Schwimmgeschwindigkeit bestimmt. Die Ergebnisse sind in der Fachzeitschrift eLife erschienen.

Die Forscherinnen und Forscher nutzten eine Kombination von neuen experimentellen Methoden und Computersimulationen: Sie verfolgten die Bewegung der...

Im Focus: Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung

Wissenschaftler der Universität Paderborn und der TU Dortmund veröffentlichen Ergebnisse in Nature Communications

Computer speichern Informationen in Form eines Binärcodes, einer Reihe aus Einsen und Nullen – sogenannten Bits. In der Praxis werden dafür komplexe...

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Schiffsexpedition bringt Licht ins Innere der Erde

24.02.2020 | Geowissenschaften

Elektronenbeugung zeigt winzige Kristalle in neuem Licht

24.02.2020 | Biowissenschaften Chemie

Antikörper als Therapiealternative bei Tumoren am Hör- und Gleichgewichtsnerv?

24.02.2020 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics