Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Überraschung im Nanometer-Bereich: Silizium-Atome springen bei Berührung mit Metall

28.10.2015

Max-Planck Forscher aus Stuttgart entdecken bisher unbekannte Eigenschaft von Halbleitern im Nanometer-Bereich

Silizium ist derzeit das für die Mikroelektronik am besten geeignete Grundmaterial: es dient als Ausgangsmaterial für alle gängigen Computerchips. Wegen der zunehmenden Bedeutung der elektronischen Schaltungen spricht man auch vom Silizium-Zeitalter.


Halbleiteratome (wie Silizium- und Germaniumatome) werden im Nanometer-Bereich unter dem Einfluss von Metall (wie Aluminium) zu Sprüngen angeregt, und dies bei Temperaturen von -190 Grad Celsius

Dr. Zumin Wang

Auch die Bezeichnung Silicon Valley („Silizium-Tal“) für die Hightech-Region in Kalifornien weist auf die enorme Wichtigkeit des Siliziums in der Halbleiter- und Computerindustrie hin.

Kristallines Silizium wird ferner für die Herstellung von TFT-Flachbildschirme zunehmend verwendet und findet darüber hinaus bei der Produktion von Photovoltaikanlagen Anwen-dung.

Ein weiterer Halbleiter ist das Element Germanium, das anfänglich das führende Material in der Elektronik darstellte, bis es vom Silizium verdrängt wurde. Vor wenigen Jahren wurde bekannt, dass einatomige Schichten aus Germanium Elektronen bis zu 10-mal schneller als Silizium leiten. Dadurch könnte es als Halbleitermaterial erneut interessant werden.

Sowohl Silizium als auch Germanium sind sehr hitzebeständig und schmelzen erst bei Temperaturen über 900 Grad Celsius. Die Atome sind im festen Zustand gleichmäßig in einem Kristallgitter angeordnet und schwingen lediglich um ihren Standort.

Bei steigenden Temperaturen werden die Schwingungen stärker, und auch Positionsveränderungen der Atome in Form von Sprüngen werden häufiger. Bei Raumtemperatur werden diese Atom-Sprünge hingegen kaum beobachtet.

Forscher unter Leitung von Prof. Dr. Ir. Eric Jan Mittemeijer, Direktor am Max-Planck-Institut für Intelligente Systeme in Stuttgart, haben nun entdeckt, dass Atomsprünge in Silizium und Germanium überraschenderweise sogar bei äußerst niedrigen Temperaturen im Bereich von minus 190 Grad Celsius auftreten, sobald sie in extrem dünnen Schichten von bis zu 1 Nanometer (ein Millionstel Millimeter) mit dem Metall Aluminium in Berüh-rung kommen.

Der Wissenschaftler Dr. Zumin Wang berichtet: „Wir versuchten bei Temperaturen von minus 190 Grad Celsius eine Probe herzustellen, bei der eine 1nm dünne Schicht Germanium oder Silizium wie in einem Sandwich von 2 Aluminium Schichten umschlossen sein sollte. Das Germanium oder Silizium wich jedoch während der Präparation immer wieder aus und hüpfte an die Oberfläche der Aluminium-Schicht. Es war uns nicht möglich, die gewünschte Probe herzustellen. Dieses Verhalten ärgerte uns zuerst, aber dann waren wir von der Beobachtung höchst überrascht.“

Die Wissenschaftler untersuchten daraufhin den Bindungszustand der Halbleiter-Atome mithilfe von röntgenspektroskopischen Messungen. Dabei stellten sie fest, dass bei extrem dünnen Schichten im Bereich von bis zu 1 Nanometer die starke Bindung zwischen den einzelnen Halbleiter-Atomen aufgrund einer Wechselwirkung mit dem benachbarten Aluminium gelockert wird. Die Halbleiter-Atome können häufiger und leichter springen. Aufgrund dieser Sprünge sind die Halbleiter-Atome beweglich und verändern ihre Position: sie springen an die Oberfläche der Aluminiumschicht. Das benachbarte Aluminium löst diese Beweglichkeit aus und darf dabei nicht weiter entfernt sein als einen halben Nanometer.

„Diese Beobachtung könnte zunehmend an Bedeutung gewinnen, da der Trend zu immer kleineren Halbleiter-Bauelemente in Computern geht. Diese befinden sich bereits in einer Größenordnung von 10-40 Nanometern, so dass an der Grenzfläche von Halbleiter zu Me-tallen Verschmierungen aufgrund von Atom-Sprüngen entstehen können. Interessant ist die Entdeckung dieses Phänomens auch für die Herstellung von Dünnschichtpräparaten auf hitzeempfindlichen Materialien, da der Halbleiter sogar bei sehr niedrigen Temperaturen zur Beweglichkeit angeregt werden kann“, wie Dr. Wang ausführt.

Weitere Informationen:

http://www.is.mpg.de/de/mittemeijer

Annette Stumpf | Max-Planck-Institut für Intelligente Systeme

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Optimierung von Legierungswerkstoffen: Diffusionsvorgänge in Nanoteilchen entschlüsselt
13.11.2018 | Technische Universität Graz

nachricht Wie beim Regenwurm: Neues atmendes Material schmiert sich bei Bedarf selbst
12.11.2018 | INM - Leibniz-Institut für Neue Materialien gGmbH

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ein Chip mit echten Blutgefäßen

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: Optimierung von Legierungswerkstoffen: Diffusionsvorgänge in Nanoteilchen entschlüsselt

Ein Forschungsteam der TU Graz entdeckt atomar ablaufende Prozesse, die neue Ansätze zur Verbesserung von Materialeigenschaften liefern.

Aluminiumlegierungen verfügen über einzigartige Materialeigenschaften und sind unverzichtbare Werkstoffe im Flugzeugbau sowie in der Weltraumtechnik.

Im Focus: Graphen auf dem Weg zur Supraleitung

Doppelschichten aus Graphen haben eine Eigenschaft, die ihnen erlauben könnte, Strom völlig widerstandslos zu leiten. Dies zeigt nun eine Arbeit an BESSY II. Ein Team hat dafür die Bandstruktur dieser Proben mit extrem hoher Präzision ausgemessen und an einer überraschenden Stelle einen flachen Bereich entdeckt. Möglich wurde dies durch die extrem hohe Auflösung des ARPES-Instruments an BESSY II.

Aus reinem Kohlenstoff bestehen so unterschiedliche Materialien wie Diamant, Graphit oder Graphen. In Graphen bilden die Kohlenstoffatome ein zweidimensionales...

Im Focus: Datensicherheit: Aufbruch in die Quantentechnologie

Den Datenverkehr noch schneller und abhörsicher machen: Darauf zielt ein neues Verbundprojekt ab, an dem Physiker der Uni Würzburg beteiligt sind. Das Bundesforschungsministerium fördert das Projekt mit 14,8 Millionen Euro.

Je stärker die Digitalisierung voranschreitet, umso mehr gewinnen Datensicherheit und sichere Kommunikation an Bedeutung. Für diese Ziele ist die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Wer rechnet schneller? Algorithmen und ihre gesellschaftliche Überwachung

12.11.2018 | Veranstaltungen

Profilierte Ausblicke auf die Mobilität von morgen

12.11.2018 | Veranstaltungen

Mehrwegbecher-System für Darmstadt: Prototyp-Präsentation am Freitag, 16. November, 11 Uhr

09.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ein Chip mit echten Blutgefäßen

13.11.2018 | Biowissenschaften Chemie

HZDR-Forscher entwickeln Tarnkappen-Technologie für leuchtende Nanopartikel

13.11.2018 | Biowissenschaften Chemie

UKE-Wissenschaftler erforschen frühe Weichenstellung für komplexes Lernen

13.11.2018 | Bildung Wissenschaft

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics