Turbolader für den Lithium-Akku

Prof. Dina Fattakhova-Rohlfing Forschungszentrum Jülich / Sascha Kreklau

Ob für Handy, Tablet oder Elektroauto: Lithium-Ionen-Akkus sind das Maß der Dinge. Ihre Speicherfähigkeit und Leistungsdichte sind der anderer wiederaufladbarer Batteriesysteme weit überlegen. Doch trotz aller Fortschritte halten Smartphone-Batterien nur einen Tag lang, Elektroautos brauchen Stunden zum Aufladen.

Wissenschaftler arbeiten deswegen Möglichkeiten, die Energiedichten und Laderaten der Allround-Batterien weiter zu verbessern. „Ein wichtiger Faktor ist das Anodenmaterial“, erklärt Dina Fattakhova-Rohlfing vom Institut für Energie- und Klimaforschung (IEK-1).

„Anoden auf der Basis von Zinndioxid können im Prinzip viel höhere spezifische Kapazitäten erreichen – also mehr Energie speichern – als zurzeit verwendete Kohlenstoff-Anoden. Denn sie haben die Fähigkeit, mehr Lithium-Ionen aufzunehmen“, so Fattakhova-Rohlfing.

„Reines Zinnoxid zeigt jedoch sehr schlechte Zyklenstabilität – die Speicherfähigkeit der Batterien nimmt stetig ab, und sie können nur wenige Male wieder aufgeladen werden. Mit jedem Auf- und Entladezyklus ändert sich das Volumen der Anode, was dazu führt, dass sie zerbröselt.“

Eine Möglichkeit, diesem Problem zu begegnen, sind sogenannte Hybridmaterialien oder Nanokomposite – Verbundwerkstoffe, die Nanopartikel enthalten. Die Wissenschaftler entwickelten ein Material aus mit Antimon angereichertem Zinnoxid-Nanoteilchen, auf einer Basisschicht aus Graphen. Die Graphenbasis dient der strukturellen Stabilität und trägt gleichzeitig zur Leitfähigkeit des Materials bei.

Die Zinnoxid-Teilchen haben nur eine Größe von weniger als drei Nanometern – also weniger als drei Millionstel Millimeter – und werden direkt auf das Graphen „aufgewachsen“. Durch die kleine Größe der Partikel und ihren guten Kontakt mit der Graphenschicht verbessert sich außerdem die Toleranz gegenüber Volumenänderungen – die Lithiumzelle wird stabiler und hält länger.

Dreifache Ladung in einer Stunde

„Die Anreicherung der Nanopartikel mit Antimon macht das Material außerordentlich leitfähig“, erklärt Fattakhova-Rohlfing. „Das macht die Anode viel schneller, sodass sie in nur einer Minute Ladezeit mehr als das Anderthalbfache an Energie speichern kann als mit herkömmlichen Graphit-Anoden möglich wäre – und bei der üblichen Ladezeit von einer Stunde sogar das Dreifache.“

„Bisher konnten so hohe Energiedichten nur bei niedrigen Laderaten erreicht werden“, sagt Fattakhova-Rohlfing. „Schnellere Ladezyklen führten immer auch zu einem schnellen Kapazitätsabbau.“ Die von den Wissenschaftlern entwickelten Antimon-dotierten Anoden dagegen behalten auch nach 1000 Zyklen noch 77 Prozent ihrer ursprünglichen Kapazität.

„Die Nanokomposit-Anoden können einfach und kostengünstig produziert werden. Und die angewandten Konzepte lassen sich auch für die Konstruktion anderer Anodenmaterialien für Lithium-Ionen-Batterien verwenden“, erklärt Fattakhova-Rohlfing. „Wir hoffen, dass unsere Entwicklung damit den Weg zu Lithium-Ionen-Batterien mit einer deutlich erhöhten Energiedichte und sehr kurzer Ladezeit ebnet.“

Originalpublikation: 'Making Ultrafast High-Capacity Anodes for Lithium-Ion Batteries via Antimony Doping of Nanosized Tin Oxide/Graphene Composites'
Florian Zoller, Kristina Peters, Peter Zehetmaier, Patrick Zeller, Markus Döblinger, Thomas Bein, Zdenek Sofer, and Dina Fattakhova-Rohlfing
Adv. Funct. Mater. 2018, 28, 1706529. DOI: 10.1002/adfm.201706529

Ansprechpartner:

Prof. Dina Fattakhova-Rohlfing
Institut für Energie- und Klimaforschung, Werkstoffsynthese und Herstellungsverfahren (IEK-1)
Tel.: 02461 61-85051
E-Mail: d.fattakhova@fz-juelich.de

Pressekontakt:

Dr. Regine Panknin
Pressereferentin
Tel.: 02461 61-9054
E-Mail: r.panknin@fz-juelich.de

http://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2018/2018-06-08-tur… Pressemitteilung des Forschungszentrums Jülich

Media Contact

Dipl.-Biologin Annette Stettien Forschungszentrum Jülich

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Erstmals 6G-Mobilfunk in Alpen getestet

Forschende der Universität Stuttgart erzielen leistungsstärkste Verbindung. Notrufe selbst in entlegenen Gegenden absetzen und dabei hohe Datenmengen in Echtzeit übertragen? Das soll möglich werden mit der sechsten Mobilfunkgeneration – kurz…

Neues Sensornetzwerk registriert ungewöhnliches Schwarmbeben im Vogtland

Das soeben fertig installierte Überwachungsnetz aus seismischen Sensoren in Bohrlöchern zeichnete Tausende Erdbebensignale auf – ein einzigartiger Datensatz zur Erforschung der Ursache von Schwarmbeben. Seit dem 20. März registriert ein…

Bestandsmanagement optimieren

Crateflow ermöglicht präzise KI-basierte Nachfrageprognosen. Eine zentrale Herausforderung für Unternehmen liegt darin, Über- und Unterbestände zu kontrollieren und Lieferketten störungsresistent zu gestalten. Dabei helfen Nachfrage-Prognosen, die Faktoren wie Lagerbestände, Bestellmengen,…

Partner & Förderer