Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Tanken von Wasserstoff jetzt fünf Mal schneller - Forscher des Helmholtz-Zentrums Geesthacht entwickeln neues Konzept

08.01.2020

Wasserstoff ist ein sauberer Antrieb für Fahrzeuge, das Speichern des Wasserstoffs gestaltet sich aber noch schwierig. Materialforscher des Helmholtz-Zentrums Geesthacht, Zentrum für Material- und Küstenforschung (HZG), entwickeln Wasserstoff-Tanks auf Leichtmetall-Basis. Im Fachmagazin Nature Scientific Reports veröffentlichen sie jetzt ein neues Konzept, mit dem diese erstmals bei unter 180 Grad Arbeitstemperatur fünf Mal schneller beladen werden könnten.

Wasserstoff bildet die perfekte Lösung für eine CO2-neutrale Mobilität, wenn das Gas zum Beispiel durch Strom aus Windkraft erzeugt wird. Denn mit Wasserstoff im Tank entsteht kein Gramm Kohlendioxid, sondern nur Wasserdampf.


Einer der begrenzenden Faktoren für den Einsatz von Wasserstoff ist das Fehlen eines effizienten Speichersystems. Bei den heutigen Brennstoffzellenautos wird Wasserstoff in Druckgastanks mit bis zu 700 Bar Druck gefüllt. Das ist teuer und technisch anspruchsvoll. Eine vielversprechende Alternative bilden Feststoffspeicher auf Magnesium- Stickstoffbasis.

Sogenannte Magnesiumhydride als Speicher für Wasserstoff werden seit einigen Jahren im Helmholtz-Zentrum Geesthacht erforscht. Der Vorteil gegenüber herkömmlichen Drucktanks: Bei gleichem Volumen speichern diese mehr Wasserstoff und damit mehr Energie.

Ein Beispiel: Mit fünf Kilogramm Wasserstoff fährt ein Brennstoffzellen-PKW circa 500 Kilometer weit. Für fünf Kilo Wasserstoff benötigt ein Hochdrucktank ein Volumen von 122 Litern, ein Tank auf Basis von Magnesiumhydrid benötigt dafür ein Volumen von nur 46 Litern. Allerdings werden zum Beladen hohe Temperaturen von rund 300 Grad Celsius benötigt.

Um diese Temperatur zu reduzieren, fügen die Forscher Zusatzstoffe hinzu, zum Beispiel Stickstoff. Dr. Claudio Pistidda, Materialforscher am Helmholtz-Zentrum Geesthacht, Abteilung „Nanotechnologie“ und einer der Autoren der aktuellen Publikation, erklärt:

„Leider führt dies oft zu einer massiven Reduzierung der Wasserstoff-Aufnahmekapazität des Systems. Wir haben daher ein neues Hydridkomposit-System entwickelt, das sich bei geringen Arbeitstemperaturen von unter 180 Grad sehr schnell beladen lässt.“

Herkömmlich liegt der Tankvorgang bei den Magnesium-Stickstoff basierten Hydridsystemen bei rund 30 Minuten für fünf Kilogramm Wasserstoff. Den HZG-Wissenschaftlern ist es jetzt gelungen, zwei Zusatzstoffe zu kombinieren, die das Beladen und Entladen des Tanks drastisch beschleunigen: Das Element Kalium und Lithium-Titanat-Oxid.

Die Wissenschaftler haben dafür in Spezialmühlen Kalium und Titanat gemeinsam mit dem Magnesium-Stickstoff-System zu winzigsten Nanopartikeln gemahlen. Dadurch vergrößert sich die Oberfläche der einzelnen Partikel, wodurch diese mehr Wasserstoff binden.

HZG-Doktorand Gökhan Gizer hat unzählige Experimente für die Studie durchgeführt. Ihm gelang jetzt nach drei Jahren der Durchbruch: Die Materialforscher konnten in dieser Studie zeigen, dass Kalium-Lithium-Titanat-Nanopartikel als Katalysatoren das Beladen mit Wasserstoff im Magnesium- Stickstoff -System beschleunigen.

Gökhan Gizer erklärt: „Wir haben damit ein System erfunden, durch das der Tankvorgang etwa fünf Mal schneller abläuft als ohne Kalium-Lithium-Titanat.“

Generell hängen das Laden und Entladen des Metallhydridspeichers vom Wärmetransport, von der Bewegung des Gases durch das Hydrid sowie die Reaktionsgeschwindigkeit mit dem Hydrid ab. Diese Vorgänge im Detail zu kennen, bildet die grundlegende Forschung der Wissenschaftler.

Eine Grundlagenforschung mit echtem Mehrwert: „Mit den Ergebnissen dieser Studie kommen wir einen großen Schritt weiter in Richtung konkurrenzfähige Speicher“, erklärt Dr. Claudio Pistidda.

Die Wissenschaftler in der Abteilung „Nanotechnologie“ arbeiten nun an dem Ziel, die Reaktionskinetik dieser neuen Materialien zu optimieren und für den technischen Einsatz im Fahrzeug zu qualifizieren.

Mehr über die Wasserstoff-Forschung im Helmholtz-Zentrum Geesthacht:
Nicht nur auf dem Gebiet des Speicherns von Wasserstoff sind die Experten in Geesthacht aktiv. Die Wissenschaftler beschäftigen sich auch mit der klimaneutralen Herstellung von Wasserstoff. Mithilfe des künstlichen Blattes ahmen sie einen Teil der Fotosynthese nach, um aus Lichtenergie und Wasser das energiereiche Gas herzustellen.

Wissenschaftliche Ansprechpartner:

Dr. Claudio Pistidda
Tel: +49 (0)4152 87-2644
E-Mail: claudio.pistidda@hzg.de

Originalpublikation:

Improved kinetic behaviour of Mg(NH2)2-2LiH doped with nanostructured Kmodified-LixTiyOz for hydrogen storage. Gökhan Gizer, Julián Puszkiel, Maria Victoria Castro Riglos, Claudio Pistidda, José Martín RamalloLópez, Martin Mizrahi, Antonio Santoru, Thomas Gemming, Jo-Chi Tseng, Thomas Klassen and Martin Dornheim. Scientific Reports (Nature)
doi:10.1038/s41598-019-55770-y

Weitere Informationen:

https://www.hzg.de/hydrogen mehr zur Wasserstoff-Forschung im HZG

https://www.hzg.de/kuenstliches-blatt Lesen Sie auch: Das Künstliche Blatt - klimaneutrale Wasserstoffproduktion

Dr. Torsten Fischer | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Charakterisierung von thermischen Schnittstellen für modulare Satelliten
19.02.2020 | Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung

nachricht Freiburger Forscher untersucht Ursprünge der Beschaffenheit von Oberflächen
17.02.2020 | Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Im Focus: Einblicke in die Rolle von Materialdefekten bei der spin-abhängigen Petahertzelektronik

Die Betriebsgeschwindigkeit von Halbleitern in elektronischen und optoelektronischen Geräten ist auf mehrere Gigahertz (eine Milliarde Oszillationen pro Sekunde) beschränkt. Die Rechengeschwindigkeit von modernen Computern trifft dadurch auf eine Grenze. Forscher am MPSD und dem Indian Institute of Technology in Bombay (IIT) haben nun untersucht, wie diese Grenze mithilfe von Lichtwellen und Festkörperstrukturen mit Defekten erhöht werden könnte, um noch größere Rechenleistungen zu erreichen.

Lichtwellen schwingen mehrere hundert Trillionen Mal pro Sekunde und haben das Potential, die Bewegung von Elektronen zu steuern. Im Gegensatz zu...

Im Focus: Charakterisierung von thermischen Schnittstellen für modulare Satelliten

Das Fraunhofer IFAM in Dresden hat ein neues Projekt zur thermischen Charakterisierung von Kupfer/CNT basierten Scheiben für den Einsatz in thermalen Schnittstellen von modularen Satelliten gestartet. Gefördert wird das Projekt „ThermTEST“ für 18 Monate vom Bundesministerium für Wirtschaft und Energie.

Zwischen den Einzelmodulen von modularen Satelliten werden zur Kopplung eine Vielzahl von Schnittstellen benötigt, die nach ihrer Funktion eingeteilt werden...

Im Focus: Lichtpulse bewegen Spins von Atom zu Atom

Forscher des Max-Born-Instituts für Nichtlineare Optik und Kurzpulsspektroskopie (MBI) und des Max-Planck-Instituts für Mikrostrukturphysik haben durch die Kombination von Experiment und Theorie die Frage gelöst, wie Laserpulse die Magnetisierung durch ultraschnellen Elektronentransfer zwischen verschiedenen Atomen manipulieren können.

Wenige nanometerdünne Filme aus magnetischen Materialien sind ideale Testobjekte, um grundlegende Fragestellungen des Magnetismus zu untersuchen. Darüber...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

4. Fachtagung Fahrzeugklimatisierung am 13.-14. Mai 2020 in Stuttgart

10.02.2020 | Veranstaltungen

Alternative Antriebskonzepte, technische Innovationen und Brandschutz im Schienenfahrzeugbau

07.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Einblicke in den Ursprung des Lebens: Wie sich die ersten Protozellen teilten

19.02.2020 | Biowissenschaften Chemie

Haben ein Auge für Farben: druckbare Lichtsensoren

19.02.2020 | Energie und Elektrotechnik

Einblicke in die Rolle von Materialdefekten bei der spin-abhängigen Petahertzelektronik

19.02.2020 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics