Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stoßdämpfend wie eine Pomelo, hart und stichfest wie Macadamia-Nüsse

17.03.2016

Die Schalen der Früchte inspirieren zur Entwicklung neuer Materialien

Das Material, auf das die Werkstoffwissenschaftler Claudia Fleck und Paul Schüler immer wieder Druck ausüben, gibt diesem nach und nimmt dabei effizient die übertragene Energie auf. Es ist aus einer Aluminiumlegierung, extrem leicht und weist eine offenporige Schaumstruktur auf.

Dieser sogenannte bio-inspirierte Metallschaum ist der Schale der Zitrusfrucht Pomelo nachempfunden und das Ergebnis eines gemeinsamen Forschungsprojektes der TU Berlin, RWTH Aachen und der Universität Freiburg.

Pomelos, diese größten und schwersten Zitrusfrüchte der Welt, überstehen einen Sturz aus zehn Metern Höhe auf einen harten Betonboden und absorbieren beim Aufprall bis über 90 Prozent der kinetischen Energie. Ihre zwei bis drei Zentimeter dicke, extrem stoßdämpfende Schale sorgt für dieses Wunder. Wie aber ist dieses Wunder möglich?

„Die hohe und effiziente Energieabsorption der Pomelo-Schale liegt in ihrer inneren Struktur begründet“, sagt Dr.-Ing. Paul Schüler vom TU-Fachgebiet Werkstofftechnik, das von Prof. Dr.-Ing. Claudia Fleck geleitet wird. Zusammen mit den Aachener und Freiburger Kollegen wurde diese Struktur erforscht.

Licht-, rasterelektronenmikroskopische und computertomografische Untersuchungen ergaben: Das Innenleben der Pomelo-Schale ist hochkomplex und hierarchisch strukturiert. Hauptcharakteristikum ist eine offenporige Schaumstruktur. Der äußere Randbereich ist sehr fein-, der mittlere großporig und im Übergangsbereich zum Fruchtfleisch hin sind die Poren langgestreckt.

Zudem ist die Schale von steifen und sich verzweigenden Faserbündeln durchzogen, die senkrecht zur Außenseite der Schale verlaufen. „Das enorme spezifische Energieabsorptionsvermögen der Schale wird aber ganz offensichtlich durch die Stege der Schaumstruktur erzeugt. Diese sind innen hohl und mit einer Flüssigkeit gefüllt. Beim Aufprall wird die Flüssigkeit von einem Steg in den anderen gedrückt und bewirkt die stoßdämpfende Eigenschaft.

Die Schale platzt nicht auf und das Fruchtfleisch wird so vorm schnellen Verrotten bewahrt“, erklärt Paul Schüler. Diese Zusammenhänge zwischen Struktur und Eigenschaften aufzuzeigen, also zu verstehen, welche Eigenschaft durch welche Struktur begründet wird, ist ein wichtiger Aspekt in dem gemeinsamen DFG-Forschungsprojekt der drei Universitäten.

Gegenstand der Forschung war auch die Macadamia-Nuss. Die Wissenschaftlerinnen und Wissenschaftler interessierten sich für sie, weil sie im wahrsten Sinne des Wortes extrem schwer zu knacken ist. Die Schale ist nahezu resistent gegen Stiche und Schläge. Die am TU-Fachgebiet Werkstofftechnik durchgeführten mikrostrukturellen Untersuchungen zeigten eine siebenschichtige Sandwichstruktur.

Die äußere Schale weist kugel- bis kartoffelförmige sogenannte Sklereid-Zellen mit dicken Zellwänden auf. Dahinter folgt eine dicke Schicht mit ineinander verflochtenen Sklerenchymfasern. Sklereide und Sklerenchym sind pflanzliches Festigungsgewebe. „Die Festigkeit der Macadamia-Schale beruht nicht auf der Dicke der Schale, sondern auf ihrer Faserstruktur, die andere Nussschalen nicht aufweisen – so unsere Erkenntnis“, sagt Paul Schüler.

Diese Strukturen zu erkennen und zu verstehen ist die eine Seite. Die andere Seite ist, das Wissen darüber anzuwenden, zum Beispiel für die Entwicklung neuer Materialien. „Die Pomelo- und Macadamia-Nussschalen sind herausfordernde Inspirationsquellen für die bionische Entwicklung von Schutz- oder Behältermaterialien“, so Paul Schüler. Dabei geht es in der Bionik aber nicht darum, die Natur eins zu eins nachzubauen. Dafür sind die biologischen Strukturen zu komplex.

Die Wissenschaftler wollen von der Komplexität abstrahieren und bei der Entwicklung neuer Materialien nur die Struktur- und Funktionsprinzipien nutzen, die die gewünschten Eigenschaften im Wesentlichen verantworten. Interessant wäre, so Paul Schüler, ein neues Material zu entwickeln, das die hervorstechenden Eigenschaften der Pomelo-Schale – hohe und energieeffiziente Energieabsorption – und die der Macadamia-Nuss – extreme Festigkeit und Zähigkeit – miteinander kombiniert.

Aus einem solchen Material könnten dann Sturzhelme, Schutzwesten oder Crashabsorber beim Auto hergestellt werden. Und geradezu fantastisch wäre es, gelänge es, die Außenhülle eines Flugzeuges aus einem solchen Material zu bauen, sodass es einen Absturz übersteht und nicht auseinanderbricht. Die Passagiere blieben geschützt. Denn genau diese Funktion erfüllen die Schalen der Pomelo und der Macadamia-Nuss: Sie schützen das Innere.

Das DFG-Forschungsprojekt „Impact resistant hierarchically structured materials based on fruits walls and nutshells“ gehört zum DFG-Schwerpunktprogramm SPP 1420 “Biomimetic Materials Research: Functionality by hierarchical structuring of Materials”.

Weitere Informationen erteilt Ihnen gern:
Prof. Dr.-Ing. Claudia Fleck
TU Berlin
Fachgebiet Werkstofftechnik
Tel.: 030/314-23605
E-Mail: claudia.fleck@tu-berlin.de

Stefanie Terp | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.tu-berlin.de/

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Plastik aus Holz - Röntgenuntersuchung weist Weg zu maßgeschneiderten Bauteilen auf Lignin-Basis
27.02.2020 | Deutsches Elektronen-Synchrotron DESY

nachricht Charakterisierung von thermischen Schnittstellen für modulare Satelliten
19.02.2020 | Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wissenschaftler beleuchten aktuellen Stand der Anwendung des Maschinenlernens bei Forschung an aktiven Materialien

Verfahren des Maschinenlernens haben durch die Verfügbarkeit von enormen Datenmengen in den vergangenen Jahren einen großen Zuwachs an Anwendungen in vielen Gebieten erfahren: vom Klassifizieren von Objekten, über die Analyse von Zeitreihen bis hin zur Kontrolle von Computerspielen und Fahrzeugen. In einem aktuellen Review in der Zeitschrift „Nature Machine Intelligence“ beleuchten Autoren der Universitäten Leipzig und Göteborg den aktuellen Stand der Anwendung und Anwendungsmöglichkeiten des Maschinenlernens im Bereich der Forschung an aktiven Materialien.

Als aktive Materialien bezeichnet man Systeme, die durch die Umwandlung von Energie angetrieben werden. Bestes Beispiel für aktive Materialien sind biologische...

Im Focus: Computersimulationen stellen bildlich dar, wie DNA erkannt wird, um Zellen in Stammzellen umzuwandeln

Forscher des Hubrecht-Instituts (KNAW - Niederlande) und des Max-Planck-Instituts in Münster haben entdeckt, wie ein essentielles Protein bei der Umwandlung von normalen adulten humanen Zellen in Stammzellen zur Aktivierung der genomischen DNA beiträgt. Ihre Ergebnisse werden im „Biophysical Journal“ veröffentlicht.

Die Identität einer Zelle wird dadurch bestimmt, ob die DNA zu einem beliebigen Zeitpunkt „gelesen“ oder „nicht gelesen“ wird. Die Signalisierung in der Zelle,...

Im Focus: Bayreuther Hochdruck-Forscher entdecken vielversprechendes Material für Informationstechnologien

Forscher der Universität Bayreuth haben ein ungewöhnliches Material entdeckt: Bei einer Abkühlung auf zwei Grad Celsius ändern sich seine Kristallstruktur und seine elektronischen Eigenschaften abrupt und signifikant. In diesem neuen Zustand lassen sich die Abstände zwischen Eisenatomen mithilfe von Lichtstrahlen gezielt verändern. Daraus ergeben sich hochinteressante Anwendungsmöglichkeiten im Bereich der Informationstechnologien. In der Zeitschrift „Angewandte Chemie – International Edition“ stellen die Wissenschaftler ihre Entdeckung vor. Die neuen Erkenntnisse sind aus einer engen Zusammenarbeit mit Partnereinrichtungen in Augsburg, Dresden, Hamburg und Moskau hervorgegangen.

Bei dem ungewöhnlichen Material handelt es sich um ein Eisenoxid mit der Zusammensetzung Fe₅O₆. In einem Hochdrucklabor des Bayerischen Geoinstituts (BGI),...

Im Focus: Von China an den Südpol: Mit vereinten Kräften dem Rätsel der Neutrinomassen auf der Spur

Studie von Mainzer Physikern zeigt: Experimente der nächsten Generation versprechen Antworten auf eine der aktuellsten Fragen der Neutrinophysik

Eine der spannendsten Herausforderungen der modernen Physik ist die Ordnung oder Hierarchie der Neutrinomassen. Eine aktuelle Studie, an der Physiker des...

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

CLIMATE2020 – Weltweite Online-Klimakonferenz vom 23. bis 30. März 2020

26.02.2020 | Veranstaltungen

Automatisierung im Dienst des Menschen

25.02.2020 | Veranstaltungen

Genomforschung für den Artenschutz - Internationale Fachtagung in Frankfurt

25.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Bonner Mediziner etablieren weltweit neues, leicht tragbares Ultraschallsystem aus den USA für die Lehre am Krankenbett

27.02.2020 | Medizintechnik

Gegen multiresistente Tuberkulose-Erreger: Mit künstlicher Intelligenz neuen Wirkstoffkombinationen auf der Spur

27.02.2020 | Medizin Gesundheit

Mikro-Überlebenskünstler: Archaeen bewältigen biologische Methanisierung trotz Asche und Teer

27.02.2020 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics