Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stahl ist nicht gleich Stahl: Informatiker und Materialforscher optimieren Werkstoffklassifizierung

19.02.2018

In Autos, Windrädern und Brücken wird viel Stahl verbaut, etwa 5.000 Stahlsorten sind auf dem Markt. Doch wie können Hersteller bei einem spezifischen Stahl garantieren, dass er immer dieselbe hohe Qualität aufweist? Bisher werden dafür Materialproben unter dem Mikroskop analysiert und von erfahrenen Mitarbeitern mit Beispielbildern abgeglichen. Diese Werkstoff-Klassifizierung ist jedoch fehleranfällig. Mit Hilfe von maschinellen Lernverfahren haben Saarbrücker Informatiker und Materialforscher daher eine Methode entwickelt, die viel genauer und objektiver ist als herkömmliche Qualitätskontrollen. Ihre Ergebnisse wurden in den Scientific Reports des US-Fachmagazins Nature veröffentlicht.

Wenn Wissenschaftler aus zwei unterschiedlichen Disziplinen gemeinsam forschen, müssen sie zuerst die gleiche Sprache sprechen. „Bei uns hat es einige Zeit gedauert, bis die Informatiker verstanden haben, warum für uns Materialforscher die inneren Strukturen eines Materials und deren bildliche Darstellung eine so große Rolle spielen“, sagt Dominik Britz, Doktorand am Lehrstuhl für Funktionswerkstoffe der Universität des Saarlandes.


Die Atomsonden-Tomographie an der Universität des Saarlandes

Oliver Dietze


Prof. Frank Mücklich

Maximilian Schlosser

Diese inneren Strukturen sind nämlich eng verknüpft mit den Eigenschaften eines Materials. „Da moderne Stähle in immer mehr Varianten angeboten werden und ein zunehmend komplexes Innenleben aufweisen, werden auch die Fehlertoleranzen immer enger gesteckt. Die Ingenieure, die neue Materialien entwickeln und hohe Anforderungen an ihre Qualität erfüllen müssen, stellt das vor große Herausforderungen“, ergänzt Britz.

Sein Forscherkollege Seyed Majid Azimi vom Saarbrücker Max-Planck-Institut für Informatik musste ihm hingegen vermitteln, warum seine Methoden des maschinellen Lernens, auch „Deep Learning“ genannt, wesentlich präzisere Ergebnisse lieferten als alle von Expertenhand durchgeführten Bildanalysen. Dafür fütterte der Informatiker seinen Hochleistungsrechner mit Bilddaten, die von Experten zunächst „von Hand“ klassifiziert worden waren. Mit ihnen wurden die Computermodelle trainiert und später nochmals mit von Menschen einsortierten Bilddaten abgeglichen. Doch wie war es möglich, dass der Rechner ohne „Kenntnis“ der Materialien so gute Ergebnisse lieferte?

Dafür hilft es zu verstehen, wie die Stahlproduktion abläuft, denn sie bildete für diese Studie beispielhaft die Datenbasis. „Die Herstellung von Spezialstählen ist äußerst anspruchsvoll und von vielen Faktoren abhängig, angefangen bei der chemischen Zusammensetzung über das verwendete Walzverfahren bis hin zu den verschiedenen Wärmebehandlungen. Jeder Produktionsschritt hat Auswirkungen auf die inneren Strukturen des Stahls“, erläutert Dominik Britz.

Die Materialwissenschaftler nennen diese Mikrostrukturen auch Gefüge. Darin grenzen sogenannte Körner oder Kristallite einzelne Bereiche ab, die eine bestimmte Kristallstruktur aufweisen, sich aber in ihrer Ausrichtung von den benachbarten Körnern unterscheiden. Dabei kann nicht nur die Ausrichtung der Körner, sondern auch deren individuelle Form und ihre räumliche Verknüpfung von hoher geometrischer Komplexität sein. „Dieses hoch komplexe Gefüge wird bei der Materialentwicklung und in der Qualitätskontrolle durch Mikroskopie-Aufnahmen sichtbar gemacht. Es wird dafür speziell präpariert und unter Licht- und Elektronenmikroskopen begutachtet“, erklärt Britz.

Um einen Werkstoff zu klassifizieren, werden die Mikroskopie-Aufnahmen mit Beispielbildern verglichen, die eine typische geometrische Gefügestruktur aufweisen. Erfahrene Ingenieure in der Qualitätssicherung von Unternehmen entwickeln dafür über die Jahre einen genauen Blick, um einzuschätzen, welche Stahlstruktur vorliegt.

„Doch auch ein geübter Experte kann sich täuschen, da die Bildabweichungen manchmal mit bloßem Auge kaum zu erkennen zu sind. Wir Menschen sind recht gut darin, kleine relative Unterschiede zu sehen, aber wir können nur schlecht absolute geometrische Standards wiedererkennen“, erläutert Uni-Professor Frank Mücklich, der die Studie betreut hat. Daran waren auch Mitarbeiter des von ihm geleiteten Steinbeis-Forschungszentrums für Werkstofftechnik (MECS) beteiligt.

Die Materialforscher suchten nach einem „täuschungssicheren“ objektiven Verfahren, das unabhängig von den fachlichen Vorkenntnissen des Anwenders eingesetzt werden kann. „Durch maschinelle Lernmethoden können Computer sehr schnell komplexe Muster erkennen und die Geometrie der Mikrostrukturen in Mikroskopie-Aufnahmen einander zuordnen. Sie können aber auch die Merkmale von vorher klassifizierten Mikrostrukturen lernen und diese mit den erkannten Mustern abgleichen“, erklärt Mücklich.

Auf diese Weise konnten die Saarbrücker Forscher die Mikrostrukturen von kohlenstoffarmem Stahl genau bestimmen, was bisher in dieser Detailschärfe nicht möglich war. „Unser System erreicht eine Klassifikationsgenauigkeit von rund 93 Prozent. Mit den herkömmlichen subjektiven Methoden konnten kaum mehr als 50 Prozent der Materialproben korrekt klassifiziert werden “, sagt der Materialforscher.

Dass die Saarbrücker Wissenschaftler ihre Ergebnisse in den renommierten Scientific Reports des Fachmagazins Nature veröffentlichen konnten, ist für Professor Frank Mücklich eine Anerkennung dafür, dass hier erstmals die zwei unterschiedlichen Forschungsgebiete auf so gewinnbringende Weise miteinander verknüpft wurden. „Für uns ist das erst der Beginn einer intensiven Zusammenarbeit mit der hochkarätigen Informatikforschung auf dem Saarbrücker Uni-Campus.

Die neuen Deep-Learning-Verfahren werden uns helfen, nicht nur die Qualität von Stahl und anderen Werkstoffen objektiver und genauer zu bewerten. Wir gehen davon aus, dass sich unsere Ergebnisse auch auf viele andere Produktionsprozesse und Materialien übertragen lassen“, erklärt Mücklich.
Die wissenschaftliche Studie „Advanced Steel Microstructural Classification by Deep Learning Methods” ist in den Scientific Reports des Fachmagazins Nature veröffentlicht worden. Daran beteiligt waren der Informatik-Doktorand Seyed Majid Azimi und sein Forschungsgruppenleiter Mario Fritz vom Max-Planck-Institut für Informatik sowie die Materialwissenschaftler Dominik Britz, Michael Engstler und Professor Frank Mücklich von der Universität des Saarlandes: www.nature.com/articles/s41598-018-20037-5 

Fragen beantwortet:
Prof. Dr. Frank Mücklich
Lehrstuhl für Funktionswerkstoffe der Universität des Saarlandes
Steinbeis-Forschungszentrum Material Engineering Center Saarland (MECS)
Tel. 0681/302-70500
Mail: muecke@matsci.uni-sb.de

Hinweis für Hörfunk-Journalisten: Sie können Telefoninterviews in Studioqualität mit Wissenschaftlern der Universität des Saarlandes führen, über Rundfunk-Codec (IP-Verbindung mit Direktanwahl oder über ARD-Sternpunkt 106813020001). Interviewwünsche bitte an die Pressestelle (0681/302-3610).

Weitere Informationen:

http://www.nature.com/articles/s41598-018-20037-5 - Originalpublikation
http://www.uni-saarland.de/fuwe - Lehrstuhl für Funktionswerkstoffe
https://scalable.mpi-inf.mpg.de - Forschungsgruppe von Mario Fritz (Max-Planck-Institut für Informatik)
http://www.uni-saarland.de/pressefotos

Friederike Meyer zu Tittingdorf | Universität des Saarlandes

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Neue Materialien – Wie Polymerpelze selbstorganisiert wachsen
16.11.2018 | Karlsruher Institut für Technologie

nachricht Emulsionen masschneidern
15.11.2018 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: Eine kalte Supererde in unserer Nachbarschaft

Der sechs Lichtjahre entfernte Barnards Stern beherbergt einen Exoplaneten

Einer internationalen Gruppe von Astronomen unter Beteiligung des Max-Planck-Instituts für Astronomie in Heidelberg ist es gelungen, beim nur sechs Lichtjahre...

Im Focus: Mit Gold Krankheiten aufspüren

Röntgenfluoreszenz könnte neue Diagnosemöglichkeiten in der Medizin eröffnen

Ein Präzisions-Röntgenverfahren soll Krebs früher erkennen sowie die Entwicklung und Kontrolle von Medikamenten verbessern können. Wie ein Forschungsteam unter...

Im Focus: Ein Chip mit echten Blutgefäßen

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Kalikokrebse: Erste Fachtagung zu hochinvasiver Tierart

16.11.2018 | Veranstaltungen

Können Roboter im Alter Spaß machen?

14.11.2018 | Veranstaltungen

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Mikroplastik in Kosmetik

16.11.2018 | Studien Analysen

Neue Materialien – Wie Polymerpelze selbstorganisiert wachsen

16.11.2018 | Materialwissenschaften

Anomale Kristalle: ein Schlüssel zu atomaren Strukturen von Schmelzen im Erdinneren

16.11.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics