Spintronik: Physiker entdecken neues Material für hocheffiziente Datenverarbeitung

Durch alle technischen Geräte fließt elektrischer Strom. Dabei entsteht Wärme, Energie geht verloren. Die Spintronik erforscht unter anderem neue Konzepte, um dieses Problem zu lösen. Genutzt wird dabei eine spezielle Eigenschaft von Elektronen: der Spin.

Dabei handelt es sich um eine Art Eigendrehimpuls von Elektronen, der ein magnetisches Moment erzeugt und Ursache des Magnetismus ist. Die Idee: Fließen anstelle von elektrischen Ladungen Spinströme durch ein Material, entsteht dabei keine Wärme und es kommt zu einem deutlich geringeren Energieverlust in den Geräten.

„Ganz ohne elektrischen Strom kommt der Ansatz jedoch nicht aus. Daher ist eine effiziente Umwandlung zwischen Spin und Ladung erforderlich, um diese neuartige Technologie zu realisieren“, sagt die Physikerin Prof. Dr. Ingrid Mertig von der MLU.

Ihre Arbeitsgruppe ist Teil des internationalen Forschungsteams, das das neue Material entdeckt hat. Geleitet wurde die Arbeit vom französischen Physiker Dr. Manuel Bibes, der am renommierten Centre national de la recherche scientifique (CNRS) – Thales forscht.

Die Gruppe untersuchte die Grenzfläche zwischen zwei Oxiden. „Die beiden Stoffe sind eigentlich Isolatoren, die nicht leiten. An ihrer Grenzfläche entsteht aber eine Art zweidimensionales Elektronengas, das sich wie ein Metall verhält, Ströme leitet und mit einer extrem hohen Effizienz Ladungsstrom in Spinstrom umwandeln kann“, erklärt Mertig.

Dr. Annika Johansson und Börge Göbel aus ihrer Arbeitsgruppe lieferten die theoretische Erklärung dafür. Das neue Material ist den Forschenden zufolge deutlich effizienter als alle anderen bisher bekannten Materialien. Damit könnte es den Weg ebnen für die Entwicklung neuer, energiesparender Computer.

Die MLU hat eine große Expertise im Bereich der oxidischen Grenzflächen: Seit 2008 ist hier der Sonderforschungsbereich SFB 762 „Funktionalität oxidischer Grenzflächen“ angesiedelt, der von der Deutschen Forschungsgemeinschaft (DFG) gefördert wird. Der SFB ist Teil des Forschungsschwerpunkts „Materialwissenschaften – Nanostrukturierte Materialien“ der Universität.

Die Idee für das Projekt entstand bei einem Gastaufenthalt von Manuel Bibes in Halle im vergangenen Jahr. Bibes ist Träger des Friedrich Wilhelm Bessel-Forschungspreises der Alexander von Humboldt-Stiftung.

Mit dem Preis werden international anerkannte Wissenschaftler aus dem Ausland für ihre bisherigen Forschungsleistungen ausgezeichnet. Das Preisgeld können die Forschenden Forschungsaufenthalte an deutschen Universitäten und Forschungseinrichtungen nutzen.

Vaz D. et al. Mapping spin-charge conversion to the band structure in a topological oxide two-dimensional electron gas. Nature Materials (2019). DOI: 10.1038/s41563-019-0467-4

Media Contact

Tom Leonhardt idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.uni-halle.de

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer