Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf smarten Oberflächen bleibt kein Tropfen

01.06.2012
Sei es bei Fensterscheiben, Korrosionsbeschichtungen oder mikrofluidischen Systemen im medizinischen Labor – Oberflächen, die sich selbst von Wasser und anderen Flüssigkeiten befreien, würden vieles vereinfachen. Wie solche Oberflächen für verschiedene Anwendungen aussehen müssen, errechnet nun ein neues Simulationsprogramm.

Es regnet in Strömen. Ein kurzer Weg bis zum Auto, und schon vernebeln zahlreiche Tropfen auf der Brille die Sicht. Künftig könnte es allerdings überflüssig sein, das Putztuch zu zücken:


Links: Mikrometerfein strukturierte Polystyroloberfläche für mikrofluidische Anwendungen. Rechts: Statische Benetzung einer solchen Oberfläche mit Wasser – Simulation und Experiment. © Fraunhofer IWM

Ist die Oberfläche des Glases ähnlich gestaltet wie die eines Lotusblattes, laufen die Tropfen von alleine ab, ohne Spuren zu hinterlassen. Sinnvoll sind solche selbstreinigenden Flächen nicht nur bei Brillengläsern – auch Korrosionsbeschichtungen würden dem nagenden Rost deutlich länger standhalten, wenn das Wasser nicht in kleinen Pfützen darauf stehen bliebe.

Doch wie müssen Oberflächen genau beschaffen sein, um sich optimal selbst zu reinigen? Das errechnet nun eine Simulationssoftware, die Forscher am Fraunhofer-Institut für Werkstoffmechanik IWM in Freiburg entwickelt haben. »Unsere Simulation zeigt, wie sich verschiedene Flüssigkeiten auf unterschiedlichen Oberflächen verhalten – ganz gleich, ob diese eben, gekrümmt oder strukturiert sind«, erklärt Dr. Adham Hashibon, Projektleiter am IWM.

Das Programm simuliert zum einen die Form, die Flüssigkeitstropfen auf der Oberfläche annehmen – also etwa, ob sich die Flüssigkeit auf der Oberfläche verteilt oder sich tropfenmäßig zusammenzieht, um möglichst wenig Kontakt mit ihr zu haben. Zum anderen berechnet es das Fließverhalten und damit, wie sich die Flüssigkeiten auf verschiedenen Oberflächen bewegen. Die Forscher integrieren dabei Faktoren über viele Größenskalen hinweg: von atomaren Wechselwirkungen bis hin zu den Auswirkungen der mikroskopischen Oberflächenstruktur.

Die Software analysiert, was innerhalb eines Tropfens passiert – wie also die einzelnen Wassermoleküle miteinander wechselwirken, wie ein Tropfen von der Oberfläche angezogen wird und sich gegenüber der Luft abgrenzt. Die Forscher sprechen von der Drei-Phasen-Kontaktlinie zwischen Flüssigkeit, Oberfläche und Luft. »Es gibt sehr viele Parameter, die beeinflussen, wie sich die Flüssigkeit auf einer Fläche verhält – beispielsweise die Oberflächenbeschaffenheit des Materials und die Struktur, aber auch Substanzen, die in der Flüssigkeit gelöst sind. All dies haben wir in unterschiedlichen Detailierungsgraden in der Simulation berücksichtigt und können so unsere experimentellen Ergebnisse sehr gut wiedergeben«, sagt Hashibon.

Mikrofluidische Systeme verbessern

Auch für medizinische Untersuchungen ist die Simulation hilfreich. Müssen Ärzte Gewebezellen oder DNA-Bestandteile analysieren, verwenden sie dafür oft mikrofluidische Systeme wie Durchfluss-Küvetten. Die Flüssigkeit mit den gelösten Substanzen fließt durch winzige Kanäle und kleine Kammern und wird dabei analysiert. Wichtig ist, dass sie sich nach der Untersuchung restlos aus allen Kammern und Kanälen entfernen lässt. Denn würden Tropfenreste hängen bleiben, würden sie sich später mit der neuen Probe vermischen und die Ergebnisse verfälschen. Die Simulation soll künftig dabei helfen, solche mikrofluidischen Systeme zu optimieren und die Oberflächen so zu gestalten, dass möglichst wenig Flüssigkeit dort verbleibt.

»Unser Ziel war es, das Benetzungsverhalten von Flüssigkeiten auf strukturierten Oberflächen besser zu verstehen und gezielt zu steuern«, sagt Hashibon. Doch damit nicht genug: Das Tool kann auch helfen, eine Art Verkehrsleitsystem in den mikrofluidischen Systemen zu realisieren: Sind an einer Weggabelung die weiterführenden Kanäle jeweils mit unterschiedlichen Oberflächenstrukturen versehen, lassen sich verschiedene Bestandteile trennen – beispielsweise fließen DNA-Moleküle in den einen Kanal, andere Bestandteile in den anderen. So lässt sich die Konzentration bestimmter Moleküle erhöhen. Das ist besonders wichtig, um beispielsweise die Nachweisempfindlichkeit eines Analyseverfahrens zu erhöhen.

Dr. Adham Hashibon | Fraunhofer Forschung Kompakt
Weitere Informationen:
http://www.fraunhofer.de/de/presse/presseinformationen/2012/juni/auf-smarten-oberflaechen-bleibt-kein-tropfen.html

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Ultraleichte und belastbare HighEnd-Kunststoffe ermöglichen den energieeffizienten Verkehr
19.10.2018 | Brandenburgische Technische Universität Cottbus-Senftenberg

nachricht Nanodiamanten als Photokatalysatoren
18.10.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Auf dem Weg zu maßgeschneiderten Naturstoffen

Biotechnologen entschlüsseln Struktur und Funktion von Docking Domänen bei der Biosynthese von Peptid-Wirkstoffen

Mikroorganismen bauen Naturstoffe oft wie am Fließband zusammen. Dabei spielen bestimmte Enzyme, die nicht-ribosomalen Peptid Synthetasen (NRPS), eine...

Im Focus: Größter Galaxien-Proto-Superhaufen entdeckt

Astronomen enttarnen mit dem ESO Very Large Telescope einen kosmischen Titanen, der im frühen Universum lauert

Ein Team von Astronomen unter der Leitung von Olga Cucciati vom Istituto Nazionale di Astrofisica (INAF) Bologna hat mit dem VIMOS-Instrument am Very Large...

Im Focus: Auf Wiedersehen, Silizium? Auf dem Weg zu neuen Materalien für die Elektronik

Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben zusammen mit Wissenschaftlern aus Dresden, Leipzig, Sofia (Bulgarien) und Madrid (Spanien) ein neues, metall-organisches Material entwickelt, welches ähnliche Eigenschaften wie kristallines Silizium aufweist. Das mit einfachen Mitteln bei Raumtemperatur herstellbare Material könnte in Zukunft als Ersatz für konventionelle nicht-organische Materialien dienen, die in der Optoelektronik genutzt werden.

Bei der Herstellung von elektronischen Komponenten wie Solarzellen, LEDs oder Computerchips wird heutzutage vorrangig Silizium eingesetzt. Für diese...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Blauer Phosphor – jetzt erstmals vermessen und kartiert

Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Natürlich intelligent

19.10.2018 | Veranstaltungen

Rettungsdienst und Feuerwehr - Beschaffung von Rettungsdienstfahrzeugen, -Geräten und -Material

18.10.2018 | Veranstaltungen

11. Jenaer Lasertagung

16.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ultraleichte und belastbare HighEnd-Kunststoffe ermöglichen den energieeffizienten Verkehr

19.10.2018 | Materialwissenschaften

IMMUNOQUANT: Bessere Krebstherapien als Ziel

19.10.2018 | Biowissenschaften Chemie

Raum für Bildung: Physik völlig schwerelos

19.10.2018 | Bildung Wissenschaft

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics