Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schwarzer Stickstoff: Bayreuther Forscher entdecken neues Hochdruck-Material und lösen ein Rätsel des Periodensystems

29.05.2020

Im Periodensystem gilt für Kohlenstoff, Sauerstoff und andere leichte Elemente eine Goldene Regel: Unter hohen Drücken besitzen sie ähnliche Strukturen wie schwerere Elemente in der gleichen Elementgruppe. Nur Stickstoff schien bisher aus der Reihe zu tanzen. Jetzt aber haben Hochdruck-Forscher der Universität Bayreuth diesen Sonderstatus widerlegt. Sie haben aus Stickstoff eine Kristallstruktur erzeugt, die unter Normalbedingungen bei Schwarzem Phosphor und Arsen vorkommt. Die Struktur enthält zweidimensionale atomare Schichten und ist insofern von großem Interesse für die Hightech-Elektronik. In den „Physical Review Letters“ stellen die Wissenschaftler ihre Entdeckung vor, die sie "Schwarzen Stickstoff" genannt haben.

Stickstoff – eine Ausnahme im Periodensystem?


Dr. Dominique Laniel, Forschungsstipendiat der Alexander von Humboldt-Stiftung, am Bayerischen Geoinstitut (BGI) der Universität Bayreuth.

Foto: Christian Wißler


Elementgruppe 15 des Periodensystems: Unter extrem hohen Drücken besitzt Stickstoff (rot) ebenso wie die schwereren Elemente Phosphor, Arsen, Antimon und Bismut (grün) eine Struktur, die aus zickzackförmigen zweidimensionalen Schichten besteht.

Grafik: Dominique Laniel

Ordnet man die chemischen Elemente aufsteigend nach der Anzahl ihrer Protonen und achtet dabei auf ihre Eigenschaften, dann fällt auf, dass bestimmte Eigenschaften in größeren Abständen („Perioden“) wiederkehren.

Das Periodensystem der Elemente macht diese Wiederholungen sichtbar: Elemente mit ähnlichen Eigenschaften sind jeweils in der gleichen Säule untereinander platziert und bilden so eine Elementgruppe.

Am Kopf einer Säule steht dasjenige Element, das im Vergleich mit den anderen Gruppenmitgliedern die wenigsten Protonen und das geringste Gewicht hat. Stickstoff führt die Elementgruppe 15 an, galt aber bisher als „Schwarzes Schaf“ dieser Gruppe.

Der Grund: Stickstoff zeigte bei früheren Hochdruck-Experimenten keine Ähnlichkeiten mit Strukturen, welche die schwereren Elemente dieser Gruppe – insbesondere Phosphor, Arsen und Antimon – unter Normalbedingungen aufweisen. Genau solche Ähnlichkeiten konnten bei hohen Drücken in den benachbarten, von Kohlenstoff und Sauerstoff angeführten Elementgruppen beobachtet werden.

„Schwarzer Stickstoff“ – ein Hochdruck-Material mit technologisch attraktiven Eigenschaften

Tatsächlich stellt Stickstoff jedoch keine Ausnahme dar. Dies konnten die Forscher am Bayerischen Geoinstitut (BGI) und am Labor für Kristallographie der Universität Bayreuth jetzt mit Hilfe eines von ihnen kürzlich entwickelten Messverfahrens nachweisen.

Unter der Leitung von Dr. Dominique Laniel haben sie eine ungewöhnliche Entdeckung gemacht: Bei sehr hohen Drücken und Temperaturen bilden Stickstoffatome eine Kristallstruktur, die für Schwarzen Phosphor – eine spezielle Modifikation des Phosphors – charakteristisch ist und ebenso bei Arsen und Antimon vorkommt.

Diese Struktur setzt sich aus zweidimensionalen Schichten zusammen, in denen Stickstoff-Atome nach einem einheitlichen Zick-Zack-Muster vernetzt sind. Diese 2D-Schichten ähneln hinsichtlich ihrer elektronischen Eigenschaften dem Graphen, das ein starkes Potenzial für Hightech-Anwendungen hat.

Daher wird zurzeit untersucht, ob Schwarzer Phosphor künftig als Material für hocheffiziente Transistoren, Halbleiter und andere elektronische Bauteile infrage kommt.

Für die von ihnen entdeckte Stickstoff-Modifikation schlagen die Bayreuther Forscher eine analoge Bezeichnung vor: Schwarzer Stickstoff. Einige technologisch attraktive Eigenschaften, insbesondere deren Richtungsabhängigkeit (Anisotropie), sind hier noch stärker ausgeprägt als beim Schwarzen Phosphor.

Allerdings kann der Schwarze Stickstoff nur dank der außergewöhnlichen Druck- und Temperaturverhältnisse existieren, unter denen er im Labor entsteht. Unter Normalbedingungen löst er sich sofort auf.

„Wegen dieser Instabilität sind industrielle Anwendungen derzeit ausgeschlossen. Dennoch bleibt Stickstoff ein für die Materialforschung hochinteressantes Element. Unsere Studie zeigt beispielhaft: Hohe Drücke und Temperaturen können Materialstrukturen und -eigenschaften hervorbringen, von denen die Forschung zuvor nicht wusste, ob es sie überhaupt geben kann“, sagt Laniel.

Strukturaufklärung mit Teilchenbeschleunigern

Es bedurfte geradezu extremer Bedingungen, um Schwarzen Stickstoff zu erzeugen: Der Kompressionsdruck war 1,4 Millionen mal höher als der Druck der Erdatmosphäre, die Temperatur überstieg 4.000 Grad Celsius.

Um herauszufinden, wie sich die Atome unter diesen Verhältnissen anordnen, haben die Bayreuther Wissenschaftler mit dem Deutschen Elektronen-Synchrotron (DESY) in Hamburg und der Advanced Photon Source (APS) am Argonne National Laboratory in den USA kooperiert. Hier trafen durch Teilchenbeschleunigung erzeugte Röntgenstrahlen auf die Materialproben.

“Wir waren überrascht und fasziniert, als die Messdaten uns plötzlich die für Schwarzen Phosphor charakteristische Struktur lieferten. Weitere Experimente und Berechnungen haben diesen Befund mittlerweile bestätigt. Damit steht zweifelsfrei fest: Stickstoff ist kein Ausnahme-Element, sondern folgt ebenso wie Kohlenstoff und Sauerstoff der gleichen Goldenen Regel des Periodensystems”, sagt Laniel, der 2019 als Forschungsstipendiat der Alexander von Humboldt-Stiftung an die Universität Bayreuth gekommen ist.

Internationale Kooperationen:

Als Forschungspartner der Universität Bayreuth haben neben dem Deutschen Elektronen-Synchrotron (DESY) in Hamburg und der Advanced Photon Source (APS) in Illinois/USA auch die Goethe Universität Frankfurt am Main und das internationale Software-Unternehmen BIOVIA an der neuen Studie mitgewirkt.

Forschungsförderung:

Die Forschungsarbeiten an der Universität Bayreuth wurden von der Deutschen Forschungsgemeinschaft (DFG), dem Bundesministerium für Bildung und Forschung (BMBF) und der Alexander von Humboldt-Stiftung gefördert.

Wissenschaftliche Ansprechpartner:

Dr. Dominique Laniel
Labor für Kristallographie
Universität Bayreuth
Dominique.Laniel@uni-bayreuth.de

Prof. Dr. Leonid Dubrovinsky
Bayerisches Geoinstitut (BGI)
Universität Bayreuth
Telefon: +49 (0)92155 -3736 oder -3707
Leonid.Dubrovinsky@uni-bayreuth.de

Prof. Dr. Natalia Dubrovinskaia
Labor für Kristallographie
Universität Bayreuth
Telefon: +49 (0)92155 -3880 oder -3881
Natalia.Dubrovinskaia@uni-bayreuth.de

Originalpublikation:

Dominique Laniel et al.: High-pressure polymeric nitrogen allotrope with the black phosphorus structure. Physical Review Letters (2020), DOI: https://dx.doi.org/10.1103/PhysRevLett.124.216001

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de/

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Verdrehtes WSe₂ als hochflexible Plattform für die Untersuchung exotischer Phänomene
24.06.2020 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Schaufenster Bioökonomie: Aus Pflanzenabfällen entstehen High-Tech-Materialien
24.06.2020 | Universität Hohenheim

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Struktureller Lichtschalter für Magnetismus in Antiferromagneten

Forscher vom Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) und der Universität Oxford haben den Prototyp eines Antiferromagneten mit Terahertz-Lichtpulsen in einen neuen magnetischen Zustand gebracht. Diese bahnbrechende Methode erzeugte auf ultraschnellen Zeitskalen einen Effekt, der um Größenordnungen stärker ist als bisher bekannte. Die Arbeit des Teams ist in Nature Physics veröffentlicht worden.

Magnetische Materialien spielen in der Computertechnik eine zentrale Rolle, da sie Informationen in ihrem magnetischen Zustand dauerhaft speichern. Jetzige...

Im Focus: A structural light switch for magnetism

A research team from the Max Planck Institute for the Structure of Dynamics (MPSD) and the University of Oxford has managed to drive a prototypical antiferromagnet into a new magnetic state using terahertz frequency light. Their groundbreaking method produced an effect orders of magnitude larger than previously achieved, and on ultrafast time scales. The team’s work has just been published in Nature Physics.

Magnetic materials have been a mainstay in computing technology due to their ability to permanently store information in their magnetic state. Current...

Im Focus: Virtuell erbeutet

Forschungsteam zeigt mit biomechanischen Analysen und Computersimulationen, wie die Venusfliegenfalle zuschnappt

Die Venusfliegenfalle (Dionaea muscipula) braucht nur 100 Millisekunden, um ihre Beute zu fangen. Haben sich ihre zu Schnappfallen umgewandelten Blätter...

Im Focus: Virtually Captured

Biomechanical analyses and computer simulations reveal the Venus flytrap snapping mechanisms

The Venus flytrap (Dionaea muscipula) takes only 100 milliseconds to trap its prey. Once their leaves, which have been transformed into snap traps, have...

Im Focus: NASA observes large Saharan dust plume over Atlantic ocean

NASA-NOAA's Suomi NPP satellite observed a huge Saharan dust plume streaming over the North Atlantic Ocean, beginning on June 13. Satellite data showed the dust had spread over 2,000 miles.

At NASA's Goddard Space Flight Center in Greenbelt, Maryland, Colin Seftor, an atmospheric scientist, created an animation of the dust and aerosols from the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Virtuelles Meeting mit dem BMBF: Medizintechnik trifft IT auf der DMEA sparks 2020

17.06.2020 | Veranstaltungen

Digital auf allen Kanälen: Lernplattformen, Learning Design, Künstliche Intelligenz in der betrieblichen Weiterbildung, Chatbots im B2B

17.06.2020 | Veranstaltungen

Wie nutzt man KI für industriellen 3D-Druck? Virtuelle Fraunhofer-Konferenz zur generativen Fertigung

12.06.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Verdrehtes WSe₂ als hochflexible Plattform für die Untersuchung exotischer Phänomene

24.06.2020 | Materialwissenschaften

Struktureller Lichtschalter für Magnetismus in Antiferromagneten

24.06.2020 | Physik Astronomie

Digitalisierung stabilisiert die Qualität von Turbomaschinenkomponenten in der Serienproduktion

24.06.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics