Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schutz für den Schiffsrumpf: Fraunhofer IMWS präsentiert Antifouling-Lack auf der MS Wissenschaft

04.05.2016

Algen, Seepocken und Muscheln, die sich am Rumpf festsetzen, sind in der Schifffahrt ungebetene Passagiere: Sie erhöhen den Treibstoffverbrauch und beschädigen das Material. Am Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS wurde gemeinsam mit Partnern ein ungiftiger Lack entwickelt, der dieses Biofouling effektiv verhindert. Die Technologie stellt das Fraunhofer IMWS ab heute auf der MS Wissenschaft vor: Die schwimmende Ausstellung steuert 35 Städte an und bietet eine Entdeckungsreise durch die Welt der Meere und Ozeane.

Feste Oberflächen, die man ins Meer eintaucht, werden von Mikroorganismen, Algen, Seepocken und Muscheln schnell als Lebensraum erobert. Für die Schifffahrt ist dieser Bewuchs ein gravierendes Problem:


Institutsleiter Prof. Dr. Ralf B. Wehrspohn erläutert Prof. Dr. Antje Boetius und Matthias Graf von Kielmannsegg (von rechts) das Exponat des Fraunhofer IMWS.

© Ilja Hendel/Wissenschaft im Dialog

Liegt ein Schiff vor Anker, setzen sich innerhalb kurzer Zeit diverse Organismen am Rumpf fest und bilden dicke Schichten, die das Schiff schwerer machen und den Strömungswiderstand erhöhen. Der Kraftstoffverbrauch steigt dann erheblich, verbunden mit entsprechend höheren Kosten und Schadstoffemissionen.

Die Lösung könnte eine Lackierung sein, die vom Fraunhofer IMWS gemeinsam mit dem Helmholtz-Zentrum für Umweltforschung, der bioplan GmbH, der NTC NanoTechCoatings GmbH und der Schiffswerft Barth GmbH entwickelt wurde: Der Lack besteht aus mehreren Schichten, kann Strom leiten und ist somit als Elektrode für die Elektrolyse geeignet.

Durch die Lackschichten fließt ein schwacher Gleichstrom von 0,1 Milliampere (mA) pro Quadratzentimeter. Die äußere Schicht des Lacks fungiert dabei einmal als Anode, an der Sauerstoff und Chlor entstehen. Das Wasser in unmittelbarer Umgebung der Oberfläche wird sauer, der pH-Wert sinkt. In regelmäßigen Abständen wird der Stromfluss umgepolt.

Die Lackschicht wird nun zur Kathode, an der Wasserstoff und damit ein basisches Milieu entsteht. Jetzt steigt der pH-Wert wieder an. Durch den ständigen Wechsel wird ein pH-Stress erzeugt, der die Ansiedlung von Mikroorganismen verhindert. Dieses Verfahren, von der bioplan GmbH patentiert, wurde vom Fraunhofer IMWS entscheidend weiterentwickelt.

Die Methode ist deutlich umweltfreundlicher als bisher übliche Antifouling-Lacke, die oft giftige Stoffe beinhalten, die sich im Wasser und Sediment anreichern und Meeresbewohner schädigen. »Mit unserem System schützen wir die Schiffe vor Bewuchs, das Wasser vor giftigen Stoffen und das Klima vor unnötigen Emissionen«, bringt Prof. Dr. Ralf B. Wehrspohn, Leiter des Fraunhofer IMWS, die Idee auf den Punkt. Er präsentierte die Technologie heute zur Eröffnung der MS Wissenschaft in Kiel.

Auf dem Ausstellungsschiff können Besucher mehr zum Problem des Biofoulings, den Folgen für die Wirtschaft und der Antifouling-Lösung aus Halle erfahren. Die Ausstellung zeigt an mehr als 30 Stationen zu verschiedenen Themen, welche Bedeutung die Weltmeere für das Klima haben, welche Rolle sie als Rohstoffquelle spielen und wie wir die Ozeane schützen und sinnvoll nutzen können, ohne sie auszubeuten.

Die Forscher des Fraunhofer IMWS wollen die Antifouling-Technologie, die sich bereits in einem Langzeitversuch in der Ostsee und einem ersten Schiffsversuch bewährt hat, nun für den großtechnischen Maßstab weiterentwickeln.

Mit der Schiffswerft Barth wird dazu an der Ostsee ein moderner Teststand aufgebaut und ein Schiff für entsprechende Langzeitversuche ausgerüstet. Am Fraunhofer IMWS in Halle entsteht für die weitere Optimierung der leitfähigen Lacke eine Lackieranlage, die unter anderem von der Böhnstedt Lackier- und Oberflächensysteme GmbH Berlin ausgerüstet wird.

»Wenn wir die Langzeitstabilität des elektrochemischen Antifoulingsystems gezeigt haben, können wir einen wirksamen und umweltschonenden Schutz gegen Biofouling zur Verfügung stellen, der unter Werftbedingungen installiert werden kann«, sagt Projektleiter Dr. Uwe Spohn. Auch für andere Anwendungsfelder sei die Technologie interessant. Denn Biofouling spielt auch in der Kühl- und Klimatechnik, bei der Trinkwasseraufbereitung oder bei den Fundamenten von Offshore-Windturbinen eine große Rolle.

Weitere Informationen:

http://www.imws.fraunhofer.de/de/kontakt/presse/pressemitteilungen/schutz-fuer-d...

Clemens Homann | Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS

Weitere Berichte zu: Biofouling MS Wissenschaft Mikroorganismen Schiff Schiffsrumpf

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Neue Methoden zur Beschichtung von Schiffsrümpfen
22.03.2019 | Hochschule Coburg

nachricht Innovative Zusatzwerkstoffe für den 3D-Druck machen komplexe Metallbauteile hochfest und leicht
22.03.2019 | Brandenburgische Technische Universität Cottbus-Senftenberg

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochdruckwasserstrahlen zum flächigen Materialabtrag von hochfesten Werkstoffen erprobt

Beim Fräsen hochfester Werkstoffe wie Oxidkeramik oder Sondermetalle – und besonders bei der Schruppbearbeitung – verschleißen Werkzeuge schnell. Für Unternehmen ist die Bearbeitung dieser Werkstoffe deshalb mit hohen Kosten verbunden. Im Projekt »HydroMill« hat das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen mit seinen Projektpartnern nun gezeigt, dass sich der Hochdruckwasserstrahl zum flächigen Materialabtrag von hochfesten Werkstoffen eignet. War der Einsatz von Wasserstrahlen bislang auf die Schneidbearbeitung beschränkt, zeigen die Projektergebnisse, wie sich hochfeste Werkstoffe kosten- und ressourcenschonender als bisher flächig abtragen lassen.

Diese neue und zur konventionellen Schruppbearbeitung alternative Anwendung der Wasserstrahlbearbeitung untersuchten die Aachener Ingenieure gemeinsam mit...

Im Focus: Die Zähmung der Lichtschraube

Wissenschaftler vom DESY und MPSD erzeugen in Festkörpern hohe-Harmonische Lichtpulse mit geregeltem Polarisationszustand, indem sie sich die Kristallsymmetrie und attosekundenschnelle Elektronendynamik zunutze machen. Die neu etablierte Technik könnte faszinierende Anwendungen in der ultraschnellen Petahertz-Elektronik und in spektroskopischen Untersuchungen neuartiger Quantenmaterialien finden.

Der nichtlineare Prozess der Erzeugung hoher Harmonischer (HHG) in Gasen ist einer der Grundsteine der Attosekundenwissenschaft (eine Attosekunde ist ein...

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetische Mikroboote

Nano- und Mikrotechnologie sind nicht nur für medizinische Anwendungen wie in der Wirkstofffreisetzung vielversprechende Kandidaten, sondern auch für die Entwicklung kleiner Roboter oder flexibler integrierter Sensoren. Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) haben mit einer neu entwickelten Methode magnetische Mikropartikel hergestellt, die den Weg für den Bau von Mikromotoren oder die Zielführung von Medikamenten im menschlichen Körper, wie z.B. zu einem Tumor, ebnen könnten. Die Herstellung solcher Strukturen sowie deren Bewegung kann einfach durch Magnetfelder gesteuert werden und findet daher Anwendung in einer Vielzahl von Bereichen.

Die magnetischen Eigenschaften eines Materials bestimmen, wie dieses Material auf das Vorhandensein eines Magnetfeldes reagiert. Eisenoxid ist der...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Größte nationale Tagung 2019 für Nuklearmedizin in Bremen

21.03.2019 | Veranstaltungen

6. Magdeburger Brand- und Explosionsschutztage vom 25. bis 26.3. 2019

21.03.2019 | Veranstaltungen

Teilchenphysik trifft Didaktik und künstliche Intelligenz in Aachen

20.03.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nieten, schrauben, kleben im Flugzeugbau: Smarte Mensch-Roboter-Teams meistern agile Produktion

25.03.2019 | HANNOVER MESSE

Auf der Suche nach der verschwundenen Antimaterie: Messungen mit Belle II erfolgreich gestartet

25.03.2019 | Physik Astronomie

HEIDENHAIN auf der CONTROL 2019: Belastbare Systeme für mehr Genauigkeit und Zuverlässigkeit

25.03.2019 | Messenachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics