Schnell, berührungslos: Dehnungsmessverfahren für thermisch-mechanisch hoch belastete Werkstoffe

Zyklischer Ermüdungsversuch bei 1000 °C mit taktilem und optischem Dehnungssensor. © Fraunhofer-Institut für Werkstoffmechanik IWM und Fraunhofer-Institut für Physikalische Messtechnik IPM

Hochleistungswerkstoffe verbessern die Funktion und erweitern den Einsatzbereich von Maschinen und Anlagen, beispielsweise im Leichtbau und in Hochtemperaturanwendungen der Automobilindustrie, in Kraftwerksanlagen oder in Flugzeugtriebwerken. Komponenten auf Basis von Hochleistungswerkstoffen müssen jedoch jeweils qualifiziert werden, um die Belastbarkeit und Sicherheit des späteren Produkts zu gewährleisten.

Im Hinblick auf die mechanischen Eigenschaften und das Lebensdauerverhalten geschieht dies beispielsweise mit hochfrequenten Ermüdungsversuchen unter zyklischer, wiederkehrender Belastung. Doch diese Messungen stellen hohe Ansprüche an die Messgeschwindigkeit der eingesetzten Dehnungsmesssysteme.

Jetzt ist es Forschenden am Fraunhofer-Institut für Werkstoffmechanik IWM und Fraunhofer-Institut für Physikalische Messtechnik IPM in einem gemeinsamen Projekt gelungen, die Messgeschwindigkeit für die berührungsfreie Dehnungsmessung im Rahmen von Ermüdungsversuchen um den Faktor zehn zu steigern.

Berührungs- und markierungsfreie Dehnungsmessung

Optische Dehnungsmesssysteme funktionieren berührungslos und beeinflussen somit die Probe nicht. Dieser Vorteil gilt bereits für heute übliche optische Systeme. Ihr großer Nachteil ist jedoch bisher die langsame Bildverarbeitungsgeschwindigkeit, welche die Mess- und somit auch Regelungsfrequenz begrenzt. Solch hohe Messraten sind eine Grundvoraussetzung für die optische Dehnungsregelung, an der die Wissenschaftler beider Institute aktuell mit Hochdruck arbeiten.

Hohe Regelungs- und Messfrequenzen wurden bei Ermüdungsversuchen bisher nur mit taktilen Extensometern erreicht: Der dabei notwendige Anpressdruck der Extensometerstäbe kann, insbesondere bei Versuchsbedingungen, die im Bereich der Werkstoffbelastungsgrenze liegen, zu einer ungewollten Schädigung der Probe und somit Verfälschung der Messergebnisse führen.

Das neue optische Messsystem nutzt schnelle, moderne Bildverarbeitungstechnologien erstmals dazu, die Vorteile taktiler und optischer Extensometer zu kombinieren: Schnelle, hochauflösende Kameras erfassen auch auf polierten Proben zuverlässig Oberflächenstrukturen und nutzen diese als natürliche Marker bei der Bildverarbeitung. Dadurch entfällt die aufwändige Probenpräparation zur Aufbringung von künstlichen Markern.

Auswertung mit 1000 Hz

Durch eine parallelisierte Bildauswertung auf Grafikkarten lässt sich die Dehnung aktuell bereits berührungslos mit mehr als 1000 Hz messen – zuvor waren bei optischen Systemen nur Messraten bis 100 Hz möglich. Die Messgenauigkeit des neuen Fraunhofer-Dehnungsmesssystems entspricht der Klasse 0,5 nach DIN ISO 9513. Die Größe des Bildfeldes kann an die Prüfaufgabe angepasst werden, sodass die Echtzeit-Auswertung zukünftig auch dehnungsgeregelte Versuche im Mikro- und Makrobereich erlaubt.

Das optische Messsystem bietet zukünftig auch die Möglichkeit von weiteren bildverarbeitenden Analysen. So könnte beispielsweise die Schädigungsentwicklung in Echtzeit oder im Nachgang analysiert werden. So erhalten Projektpartner exaktere Messdaten für noch genauere Vorhersagen der Bauteillebensdauer.

http://www.lcf8.de – 8th International Conference on Low Cycle Fatigue LCF8
http://www.iwm.fraunhofer.de/de/presse/pressemitteilungsliste/20_06_17_neues_deh… – Pressemitteilung online

Media Contact

Katharina Hien Fraunhofer-Institut für Werkstoffmechanik IWM

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer