Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schmucksteine aus synthetischem Diamant

12.05.2015

Synthetischer Diamant wird fast ausschließlich in industriellen Anwendungen eingesetzt. Bislang konnten die »man-made diamonds« nicht in ausreichend hoher Stückzahl hergestellt werden, um sie als Schmucksteine zu etablieren.

Forscher haben nun das Verfahren zur Herstellung von synthetischem Diamant so weit ausgereift, dass in einem Plasma-Reaktor 600 Diamanten gleichzeitig gewachsen werden können. Der weltweit einzigartige Reaktortyp des Fraunhofer-Instituts für Angewandte Festkörperphysik IAF in Freiburg ermöglicht die Herstellung von einkristallinen Diamanten mit sehr hohem Reinheitsgrad.


Eine Vielzahl einkristalliner Diamantschichten kann in dem Reaktor parallel abgeschieden werden.

Fraunhofer IAF


Die besondere Ellipsoid-Form des Plasma-Reaktors ermöglicht das großflächige Abscheiden von Diamant.

Fraunhofer IAF

»Diamonds are a girl’s best friend« sang Carol Channing schon 1949. Daran hat sich bis heute nichts geändert. Diamant als Schmuckstein ist begehrt – vor allem in den USA, China und Europa. In fünf Jahren soll die Nachfrage nach Rohdiamanten das Angebot sogar übersteigen, sagt eine Studie von Bain & Company und dem Antwerp World Diamond Centre, die Anfang März 2015 veröffentlicht wurde.

Künstlich hergestellter Diamant könnte den Markt zukünftig bereichern und eine Alternative zu der knappen, natürlichen Ressource sein. Wurde bislang die aufwendige Herstellung von sogenannten »man-made diamonds« bemängelt, präsentieren Forscher des Fraunhofer IAF nun ein Verfahren, das die serielle Produktion von einkristallinem Diamant ermöglicht.

Plasma-Reaktor lässt 600 Diamanten gleichzeitig wachsen

»600 Diamanten können wir in unserem Plasma-Reaktor gleichzeitig wachsen. Das ist weltweit einzigartig«, erklärt Dr. Christoph Nebel, Abteilungsleiter am Fraunhofer IAF. »Die besondere Bauform des Reaktors ermöglicht es, ein großvolumiges Plasma zu erzeugen und damit Diamant auf einer großen Fläche abzuscheiden«.

Innerhalb von zehn Tagen können so in dem Reaktor bis zu 600 Substrate, je 3 x 3 x 0,3 mm3 groß, mit einkristallinem Diamant überwachsen werden. Dies entspricht einer Menge von 190 Karat Schmuckdiamant. Und das Ergebnis kann sich sehen lassen: Mit einer Konzentration von Fremdatomen kleiner als 1016 cm-3 weist der künstlich hergestellte Diamant eine höhere Reinheit auf als sein natürliches Pendant.

»Mit dem bloßen Auge ist natürlicher von synthetischem Diamant nicht zu unterscheiden«, ergänzt Nebel. Nur rund 15 Prozent des in der Natur abgebauten Rohdiamanten werden als Schmuckstein etwa in einem Kollier oder Ring verwendet, da der Großteil der Steine zu unrein oder die Form ungeeignet ist. Bei dem aufwendigen Abbau des natürlichen Diamantvorkommens werden Mensch und Umwelt zudem stark in Mitleidenschaft gezogen. Dank der synthetisch hergestellten Steine könnte zukünftig »nachhaltiger« Schmuck angeboten werden.

Chemische Gasphasenabscheidung optimiert

In über 15 Jahren haben die Forscher am Fraunhofer IAF die Abscheidung von polykristallinen Diamantschichten mittels Mikrowellen-Plasma-unterstützter chemischer Gasphasenabscheidung (engl. »Microwave Plasma Chemical Vapor Depostion«, MWPCVD) perfektioniert.

Die besondere Bauform des Reaktors resultiert aus dem ellipsoiden Reflektor. Über Multiantennen-Geometrie wird die Mikrowelle in den Reaktionsraum eingekoppelt. Mittlerweile ist das Verfahren so ausgereift, dass eine Vielzahl einkristalliner Diamantschichten parallel in relativ kurzer Zeit abgeschieden werden kann.

Konkurrierende Verfahren wie das Hochdruck-Hochtemperatur-Verfahren (engl. »High-Pressure High-Temperature«, HPHT) haben es bislang nicht geschafft, Diamanten mit so hohem Reinheitsgrad in großen Mengen zu prozessieren.

Der hierbei benötigte hohe Druck und eine Temperatur von über 1500 °C erlauben nur die Züchtung einzelner Kristalle. Anders bei der chemischen Gasphasenabscheidung am Fraunhofer IAF: in einem Niederdruckverfahren werden die Diamantkristalle bei einer Temperatur von 800 °C mit hoher Wachstumsrate gezüchtet.

Diamant ist nicht nur schön anzusehen, sondern auch in Kombination mit beispielsweise Bor oder Phosphor ein vielversprechender Halbleiter. Aufgrund seiner außergewöhnlichen Wärmeleitfähigkeit ermöglicht Diamant als Grundmaterial für elektronische Bauelemente sehr hohe Leistung ohne externe Kühlung. So kann er zukünftig nicht nur in Schmuck sondern unter anderem in Leistungsbauelementen für die Satelliten-Kommunikation, Linsen für Hochenergie-Laser oder Einzelphotonen-Emittern eingesetzt werden.

Weitere Informationen:

http://www.iaf.fraunhofer.de/de/presse-veranstaltungen/pressemitteilungen/presse...

Sonja Kriependorf | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Fachhochschule Südwestfalen entwickelt innovative Zinklamellenbeschichtung
13.07.2018 | Fachhochschule Südwestfalen

nachricht 3D-Druck: Stützstrukturen verhindern Schwingungen bei der Nachbearbeitung dünnwandiger Bauteile
12.07.2018 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vernetzte Beleuchtung: Weg mit dem blinden Fleck

18.07.2018 | Energie und Elektrotechnik

BIAS erhält Bremens größten 3D-Drucker für metallische Luffahrtkomponenten

18.07.2018 | Verfahrenstechnologie

Verminderte Hirnleistung bei schwachem Herz

18.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics